Лекция 9. Методы проведения качественного химического анализа

     Понятие «метод анализа» является важнейшим для аналитической химии. Этот термин используют, когда хотят выявить суть того или иного анализа, его основной принцип. Методом анализа называют достаточно универсальный и теоретически обоснованный способ проведения анализа, безотносительно к тому, какой компонент определяют и что именно анализируют. 

     В зависимости от метода качественного анализа меняется оборудование лаборатории и техника выполнения анализа.

     В связи с этим выделяют макроанализ, полумикроанализ, микроанализ, субмикроанализ, ультрамикроанализ.

     В макрометодах для проведения химических реакций используют колбы, химические стаканы, большие пробирки. При использовании большого количества анализируемого вещества данный метод малочувствительный, длительный при реализации и неэкономичный.

     Противоположностью является ультрамикроанализ, характеризующийся высокой чувствительностью, однако реакций, обладающих столь низким пределом обнаружения, на практике очень мало.

     Поэтому, в основном, в химических лабораториях используют микро- и полумикрометоды анализа.

     По области применения аналитические реакции в качественном анализе делят на групповые и характерные.

     Групповые реакции служат для выделения из сложной смеси веществ определенных групп, называемых аналитическими. Применяемые при этом реагенты называют групповыми. Групповые реакции используют для обнаружения присутствия данной аналитической группы, для полного отделения одной аналитической группы от других групп, для концентрирования малых следовых количеств веществ, а также для отделения групп веществ, мешающих проведению анализа.     Характерными называют аналитические реакции, свойственные данному веществу.

     В качественном анализе выделяют две методики проведения полного анализа вещества: систематический анализ и дробный анализ.

     Систематическим называют полный анализ исследуемого объекта, осуществляемый путем разделения исходной аналитической системы на несколько подсистем (групп) в определенной последовательности на основе сходства и различий аналитических свойств компонентов системы.

     Дробный анализ вещества проводят с отдельными порциями раствора в присутствии всех остальных ионов или веществ. Для проведения дробного анализа необходимы специфичные качественные реакции, либо маскировка мешающих определению компонентов.

     Существуют три основных группы методов. Одни из них нацелены преимущественно на разделение компонентов исследуемой смеси (последующий анализ без этой операции оказывается неточным или вообще невозможным). В ходе разделения обычно происходит и концентрирование определяемых компонентов. Примером могут быть методы экстрагирования или методы ионного обмена. Другие методы применяют в ходе качественного анализа, они служат для достоверного опознания (идентификации) интересующих нас компонентов. Третьи, наиболее многочисленные, предназначены для количественного определения компонентов. Соответствующие группы называют методами разделения и концентрирования, методами идентификации и методами определения. Методы двух первых групп, как правилоиграют вспомогательную роль; они будут рассмотрены позднее. Наибольшее значение для практики имеют методы определения.

      Кроме трех основных групп, существуют гибридные методы. В гибридных методах разделение, идентификация и определение компонентов органично сочетаются в одном приборе (или в едином комплексе приборов). Важнейшим из таких методов является хроматографический анализ. В специальном приборе (хроматографе) компоненты исследуемой пробы (смеси) разделяются, поскольку они с разной скоростью двигаются сквозь колонку, заполненную порошком твердого вещества (сорбента). По времени выхода компонента из колонки судят о его природе и таким образом опознают все компоненты пробы. Вышедшие из колонки компоненты по очереди попадают в другую часть прибора, где специальное устройство – детектор — измеряет и записывает сигналы всех компонентов. Нередко тут же проводится автоматический расчет содержания всех компонентов. Понятно, что хроматографический анализ нельзя считать только методом разделения компонентов, или только методом количественного определения, это именно гибридный метод.

     Каждый метод определения объединяет множество конкретных методик, в которых измеряется одна и та же физическая величина. Например, для проведения количественного анализа можно измерить потенциал электрода, опущенного в исследуемый раствор, а потом по найденной величине потенциала рассчитать содержание некоторого компонента раствора. Все методики, где основной операцией является измерение потенциала электрода, считают частными случаями потенциометрического метода. При отнесении методики к тому или иному аналитическому методу не важно, какой объект исследуется, какие именно вещества и с какой точностью определяются, какой прибор используют и как проводят расчеты — важно лишь, какую величину мы измеряем. Измеряемую в ходе анализа физическую величину, зависящую от концентрации определяемого компонента, принято называть аналитическим сигналом.

     Аналогичным образом можно выделить метод спектрального анализа. В этом случае основная операция — измерение интенсивности света, излучаемого пробой на определенной длине волны. Метод титриметрического (объемного) анализа основан на измерении объема раствора, затраченного на химическую реакцию с определяемым компонентом пробы. Слово «метод» часто опускают, говорят просто «потенциометрия», «спектральный анализ», «титриметрия» и тому подобные. В рефрактометрическом анализе сигналом является показатель преломления света исследуемым раствором, в спектрофотометрии – поглощение им света (на определенной длине волны). Перечень методов и соответствующих им аналитических сигналов можно продолжить, всего известно несколько десятков независимых методов.

     Каждый метод определения имеет свои собственные теоретические основы и связан с применением специфического оборудования. Области применения разных методов существенно различаются. Одни методы преимущественно используются для анализа нефтепродуктов, другие – для анализа лекарственных препаратов, третьи – для исследования металлов и сплавов, и так далее. Аналогично можно выделять методы для проведения элементного анализа, методы изотопного анализа и так далее. Есть и универсальные методы, применяемые в анализе самых разных материалов и пригодные для определения в них самых разных компонентов. Например, спектрофотометрический метод может служить и для элементного, и для молекулярного, и для структурно-группового анализа.

     Точность, чувствительность и другие характеристики отдельных методик, относящихся к одному и тому же аналитическому методу, различаются, но не так сильно, как характеристики разных методов. Любую аналитическую задачу всегда можно решить несколькими разными методами (скажем, хром в легированной стали можно определить и спектральным методом, и титриметрическим, и потенциометрическим). Аналитик выбирает метод, учитывая известные возможности каждого из них и конкретные требования к данному анализу. Нельзя раз и навсегда выбрать “лучшие” и “худшие” методы, все зависит от решаемой задачи, от требований к результатам анализа. Так, гравиметрический анализ дает, как правило, более точные результаты, чем спектральный, но требует больших затрат труда и времени. Поэтому гравиметрический анализ хорош для проведения арбитражных анализов, но не годится для экспресс-анализа.

     Методы определения делят на три группы: химические, физические и физико-химические. Нередко физические и физико-химические методы объединяют общим названием “инструментальные методы”, поскольку в обоих случаях используются приборы, причем одни и те же. Вообще границы между группами методов весьма условны.

     Химические методы основаны на проведении химической реакции между определяемым компонентом и специально добавляемым реагентом. Реакция проходит по схеме:

                                                                       Х + R = Y 

здесь и далее символом Х обозначается определяемый компонент (молекула, ион, атом и т.п.), R — добавляемый реагент, Y — совокупность продуктов реакции.

     К группе химических методов относят классические (давно известные и хорошо изученные) методы определения, прежде всего гравиметрию и титриметрию. Число химических методов сравнительно невелико, все они имеют одни и те же теоретические основы (теорию химических равновесий, законы химической кинетики и т.п.). В качестве аналитического сигнала в химических методах обычно измеряют массу или объем вещества. Сложные физические приборы, за исключением аналитических весов, и специальные эталоны химического состава в химических методах не используются. Эти методы имеют много общего и по своим возможностям. 

     Физические методы не связаны с проведением химических реакций и применением реагентов. Их основной принцип – сопоставление однотипных аналитических сигналов компонента Х в исследуемом материале и в некотором эталоне (образце с точно известной концентрацией Х). Заранее построив градуировочный график (зависимость сигнала от концентрации или массы Х) и измерив значение сигнала для пробы исследуемого материала, рассчитывают концентрацию Х в этом материале. Существуют и другие способы расчета концентраций (см.главу 6). Физические методы обычно чувствительнее, чем химические, поэтому определение микропримесей ведут преимущественно физическими методами. Эти методы легко поддаются автоматизации, требуют меньших затрат времени на проведение анализа. Однако физические методы нуждаются в специальных эталонах, требуют довольно сложного, дорогого и весьма специализированного оборудования, К тому же они, как правило, менее точны, чем химические.

     Промежуточное место между химическими и физическими методами по своим принципам и возможностям занимают физико-химические методы анализа. В этом случае аналитик проводит химическую реакцию, но за ее ходом или за ее результатом следит не визуально, а с применением физических приборов. Например, постепенно добавляет к исследуемому раствору другой – с известной концентрацией растворенного реагента, и при этом контролирует потенциал электрода, опущенного в титруемый раствор ( потенциометрическое титрование), По скачку потенциала аналитик судит об окончании реакции, измеряет затраченный на нее объем титранта и рассчитывают результат анализа. Такие методы, как правило, столь же точны, как и химические, и почти столь же чувствительны, как и физические методы.

     Инструментальные методы часто разделяют по другому, более четко выраженному признаку – по природе измеряемого сигнала. В этом случае выделяют подгруппы оптических, электрохимических, резонансных, активационных и других методов. Существуют также немногочисленные и пока что недостаточно развитые методы биологические и биохимические методы.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *