Магические свойства изотопа Sn-132

Теория устойчивости атомных ядер опирается на оболочечную модель. Согласно модели протоны и нейтроны располагаются на определенных уровнях, и, как в теории электронных оболочек в химии, количество и заполненность играет ключевую роль в предсказании свойств ядер. Характерной особенностью оболочечной модели является существование магических чисел — такого количества протонов или нейтронов, при котором ядро становится очень стабильным по отношении к ближайшим соседям. Магические числа соответствуют заполненным оболочкам, а ядрам-счастливчикам, магичным по протонам и нейтронам (таких всего 10), уделяется особое внимание. 

Магические ядра − атомные ядра, содержащие так называемые магические числа протонов или нейтронов.

 

Z 2 8 20 28 50 82
N 2 8 20 28 50 82 126

Эти ядра имеют энергию связи больше, чем соседние ядра. Они имеют большую энергию отделения нуклона и повышенную распространённость в природе. Существование магических чисел является проявлением оболочечной структуры ядра. Магическим числам нуклонов отвечают ядра с заполненными нуклонными оболочками, имеющими повышенную устойчивость, подобно атомам инертных газов с заполненными электронными оболочками. Ядра, содержащие магические числа протонов и нейтронов, называются дважды магическими. К ним относятся стабильные ядра: 24He,  816O,  2040Ca,  2048Ca,  82208Pb.

 Микроскопические модели атомных ядер предсказывают новые магические числа Z = 110, 114, 120 и N = 184. Это означает возможность существования новых областей повышенной стабильности атомных ядер − «островов стабильности». Поиск сверхтяжёлых атомных ядер и исследование новых областей стабильности — одно из важных направлений современной ядерной физики.

Олово (Sn) магично по атомному номеру (50), существует два дважды магических изотопа (Sn-100 и Sn-132). Изотоп Sn-132 наиболее интересен для исследователей, так как является ориентиром для теоретических подходов в физике более тяжелых и более насыщенных нейтронами систем. Регион вблизи олова-132 на карте атомных ядер играет решающую роль в описании нуклеосинтеза, а именно образования тяжелых ядер и точного описания элементного изобилия в Солнечной системе (вследствие так называемого r-процесса, rapid neutron-capture process). Поэтому ученым важно наиболее точно определить структуру ядерной оболочки олова-132 для более точного моделирования r-процесса.

Для проведения эксперимента физики взяли изотопы олова-132, произведенные с помощью установки ISOLDE (Isotope Separator On-Line Detector) и ускорили их в HIE-ISOLDE до энергии 5,49 мегаэлектронвольт на нуклон, а затем сфокусировали их на мишени из свинца-206 (206Pb) внутри матрицы детекторов гамма-излучения MINIBALL. Это возбудило нуклоны в ядрах олова-132 в состояния с более высокой энергией. Исследователи впервые анализировали силу возбуждения, измеряя количество испускаемых возбужденным состоянием гамма-квантов. Анализ позволил обнаружить более выраженные возбуждения в олове-132 по сравнению с таковыми у его ядерных соседей. Это было предсказано теорией и является важнейшей особенностью дважды магических ядер.

Ученым удалось получить то, на что они надеялись — имеющиеся в арсенале исследователей теоретические инструменты адекватны для моделирования нуклеосинтеза. И, согласно комментарию одного из участников нового проекта на сайте ЦЕРН, получить такой результат было непросто и благодарить стоит уникальную комбинацию первичной установки ISOLDE для производства радиоактивных изотопов, нового ускорителя HIE-ISOLDE, обеспечившего идеальную энергию на нуклон для этого типа эксперимента и высокую эффективностью и превосходное энергетическое разрешение детектора MINIBALL.

 

Екатерина Жданова по материалам https://nplus1.ru/news/2018/12/21/cern-tin132?utm_source=mainweeknews&utm_medium=email&utm_campaign=e.2018-12.w52&utm_content=txt-link

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *