Фонарик на элементах пельтье

Элемент пельтье что это такое, назначение, характеристики, принцип работ

Холодильное оборудование и комплексы для охлаждения воздуха являются неотъемлемыми элементами повседневной жизни. Однако стандартные объемные конструкции на базе хладагентов нецелесообразны для мобильного применения, к примеру, в сумках-холодильниках. В таких случаях используются приборы, основанные на работе эффекта Пельтье, о котором мы детально расскажем в данном материале.

В основе элемента Пельтье или термоэлектрического охладителя лежит термопара из двух элементов с p- и n- типом проводимости, которые соединяются коммутационной медной пластиной. Детали в большинстве случаев изготовляются из висмута, теллура, сурьмы и селена. Такие устройства применяются в системах охлаждения бытового применения, также они имеют свойство вырабатывать энергию.

Что это такое?

Явление и термин Пельтье предполагают открытие, сделанное в 1834 году французским ученым Жаном-Шарлем Пельтье. Суть открытия состоит в том, что постоянно выделяется или поглощается тепло на участке, где происходит контакт двух разнонаправленных проводников, по которым течет электроток.

Классическая теория объясняет данное явление таким образом: при помощи электротока между металлами переносятся электроны, ускоряющиеся или замедляющиеся, в зависимости от контактной разности потенциалов на проводниках из металла с разным уровнем проводимости. Элементы Пельтье таким образом способствуют превращению кинетической энергии в тепловую.

На втором проводнике происходит обратный эффект, где необходимо пополнение энергии на основании фундаментального закона физики. Происходит такая ситуация благодаря процессу теплового колебания, в результате которого металл второго проводника охлаждается.

При помощи современных технологий можно изготовить модуль Пельтье с максимальным термоэлектрическим эффектом.

Устройство и принцип работы

Современные модули Пельтье являют собой конструкцию, в которой присутствуют две пластины-изолятора, а между ними в строгой последовательности соединены термопары. Стандартная схема данного элемента для лучшего понимания его функционирования приведена на рисунке.

Обозначения элементов конструкции:

  • А – контакты, при помощи которых осуществляется подсоединение к источнику питания;
  • В — горячая поверхность;
  • С — холодная сторона;
  • D – проводники из меди;
  • E – полупроводник р-перехода;
  • F – полупроводник типа n.

Элемент изготовляется так, что обе поверхности находятся в контакте с p-n или n-p переходами, исходя из полярности. Контакты p-n нагреваются, а n-p температура снижается. В результате на концах элемента появляется разница температур DT. Такой эффект означает, что тепловая энергия, которая перемещается между элементами модуля, регулирует температурный режим в зависимости от полярности. Также следует отметить, что в случае изменения полярности меняются горячая и холодная поверхности.

Технические характеристики

Технические параметры элемента Пельтье предполагают такие значения:

  • холодопроизводительность (Qmax) – рассчитывается на базе предельного тока и разницы температурного режима между концами модуля. Единица измерения – Ватт;
  • предельная температурная разница (DTmax) – измеряется в градусах, данная характеристика приводится для оптимальных условий;
  • Imax – предельная сила электротока, требуемая для обеспечения большей разницы температуры;
  • предельное напряжение Umax, которое требуется для электротока Imax для достижения максимальной температурной разницы DTmax;
  • Resistance – внутреннее сопротивление устройства, измеряется в Омах;
  • СОР – коэффициент эффективности или КПД модуля Пельтье, который отражает соотношение охлаждающей и потребляемой мощностей. В зависимости от особенностей устройства, для недорогих устройств показатель находится в пределах 0,3-0,35, для более дорогих моделей он варьируется до 0,5.

Преимуществами мобильного элемента Пельтье являются небольшие габариты, обратимость процесса, а также возможность использования в качестве переносного электрогенератора или холодильника.

Недостатками модуля являются дороговизна, невысокий КПД в рамках 3%, большие затраты электроэнергии и необходимость постоянного поддержания разницы температурных режимов.

Применение

Даже учитывая невысокий коэффициент эффективности, пластины в модуле Пельтье широко применяются в измерительных, вычислительных приборах, а также в переносной бытовой технике. Приведем перечень устройств, в которых модели являются неотъемлемой частью:

  • переносные холодильные устройства;
  • небольшие генераторы электричества;
  • комплексы охлаждения в ПК и ноутбуках;
  • кулеры для подогрева и охлаждения питьевой воды;
  • осушители воздуха.

Как подключить

Подключить модуль Пельтье можно самостоятельно, это не потребует много времени и усилий. На контакты выходов требуется подать постоянное напряжение, которое указано в инструкции по эксплуатации прибора. Красный провод подсоединяется к плюсу, а черный – к минусу. Обратите внимание, что при изменении полярности поменяются местами нагреваемая и охлаждаемая поверхности.

Перед подключением рекомендуется проверить работоспособность элемента. Одним из простых и надежных способов, как проверить устройство, является тактильный метод: для этого необходимо подсоединить устройство к источнику электротока и прикоснуться к разным контактам. У нормально функционирующего устройства одни контакты будут теплыми, а другие – охлажденными.

Также можно выполнить проверку при помощи мультиметра и зажигалки. Для этого нужно подсоединить щупы в контактам устройства, поднести зажигалку к одной стороне и наблюдать за показаниями мультиметра. Если элемент Пельтье работает в стандартном режиме, в процессе нагрева на одной стороне будет вырабатываться электроток, а данные о напряжении отобразятся на экране мультиметра.

Как сделать элемент пельтье своими руками

Элемент Пельтье нецелесообразно изготовлять в домашних условиях в связи с небольшой стоимостью и необходимостью специальных знаний для создания работоспособного элемента. Однако своими руками можно собрать эффективный мобильный термоэлектрический генератор, который пригодится на даче или в туристическом походе.

С целью стабилизации электрического напряжения потребуется собрать самостоятельно стандартный преобразователь на микросхеме ИМС L6920. На вход устройства необходимо подать напряжение 0,8-5,5 В, а на выходе он будет выдавать 5 В, этого значения достаточно для зарядки аккумулятора мобильных устройств в стандартном режиме. Если применяется стандартное электронное устройство Пельтье, тогда потребуется ограничение предельного значения температуры нагреваемой поверхности до 150 градусов. Для простоты контроля температуры целесообразно применять котелок с кипящей водой, тогда модель не будет нагреваться свыше 100 градусов.

Пластины Пельтье широко используются с целью охлаждения современной бытовой техники, в кондиционерах, эффективность устройства доказали в частности для стабилизации теплового режима и охлаждения мощного процессора. На основе элемента Пельтье часто изготовляются в домашних условиях эффективные мобильные холодильники для дачи или автомобиля, питания радиатора. В силу обратимости процесса, самодельные элементы используются в роли мобильных небольших электростанций в местностях без источника электроэнергии.

Читайте также:  БМВ 5 Е39 - слабые места и проблемы бу авто

Элемент Пельтье

Элемент Пельтье – это электрическое устройство, под действием электрического тока образующее на рабочих площадках разницу температур. Принцип действия обратный эффекту Зеебека. Примечательно, что выводы термопары принято называть спаем, как и реальный спай металлов в чувствительном месте датчика. Не стоит впадать в заблуждение, концы обычно подключены к измерительной схеме и не соприкасаются.

Эффекты термоэлектричества

21 июля 1820 года считается поворотной точкой развития истории: Эрстед решился опубликовать свои наблюдения о влиянии провода с током на ориентацию магнитной стрелки в пространстве. Дальнейшие открытия следуют чередой, нас интересует изобретение первого гальванометра. Изготовитель, Швейггер, назвал прибор мультипликатором за способность умножать результат действия на магнитную стрелку нескольких витков провода, несущего ток. Благодаря этому годом позже (1821) физик эстонского происхождения Зеебек открыл термоэлектричество. Общеизвестно, что случившееся помогло пятью годами позже Георгу Ому получить всемирно известный закон.

Литература говорит, что Зеебек в качестве детектора использовал соленоид с многочисленными витками проволоки и магнитную стрелку. История умалчивает, как к учёному попала спайка висмут-сурьма, но повествует, что учёный подключил тандем в качестве источника питания и видел колебания компаса постоянно, когда брал термопару в руки. Вероятно, оказался близок к открытию собственных сверхспособностей, но в результате к выводу, что виновато тепло рук. Больших результатов учёный добился, используя осветительную лампу в качестве источника тепла.

Зеебек неправильно истолковал результат опыта, назвав открытие магнитной поляризацией: смещение точки нагрева на другой конец изменяло направление отклонения стрелки. В результате выстроилась неправильная теория. Стали утверждать, что температурой возможно непосредственно получить магнитные свойства, а поле Земли обусловлено деятельностью вулканов. Георг Ом уже вскоре после описанного открытия применил термо-ЭДС для вывода известного закона, а в 1831 году подобный источник использовался в опытах по электролизу.

Величина термо-ЭДС невелика. Обычно десятки мВ. Если требуется найти конкретное значение, пользуются таблицами. Эталоном для температур диапазона климата Земли служит платина. Таблицы содержат значение термо-ЭДС для термопар из указанного металла и исследуемого: хромель, алюмель, меди, железо. Значения бывают положительными и отрицательными. К примеру, для сурьмы это +4,7 мВ, а для висмута – минус 6,5. Значения складываются и становится ясно, что при разнице температур на концах пары в 100 градусов образуется ЭДС в 12,2 мВ. Георг Ом подобные условия и пытался создать, погрузив первый конец в лёд, а второй – в кипящую воду.

Справочные таблицы иногда содержат множество значений. К примеру, для разных температур с шагом в 100 градусов. Тогда удаётся посчитать значения для каждой, но и с замещением нуля на любую из указанных температур. Берётся разность между большим и меньшим значением. У отдельных термопар при определённой температуре направление термо-ЭДС меняется на противоположное. К примеру, для меди и железа граничной точкой станет 540 градусов Цельсия.

Эффект Пельтье

Эффект Пельтье называют зеркальным отражением термоэлектричества. В этом случае ток переносит тепло с первого конца термопары на второй. Причём с изменением направления и нагреваемая сторона обращается на противоположную. Эффект открыт в 1834 году, получив неправильное толкование. Лишь 4 года спустя «соотечественник» Ленц сумел заморозить и испарить каплю воды при помощи термопары. В каждом случае ток показывал собственное направление.

Эффект объясняется просто в современной физике. Допустим, имеется два разнородных полупроводника с одинаковым типом проводимости. Электроны в каждом обретают разное значение энергии, причём уровни в обоих случаях расположены близко. Теперь представим, что электрический ток начал переносить заряды из одной среды в другую. Что произойдёт? Электроны с повышенной энергией, оказавшись в среде пониженных уровней, отдадут лишнее количество кристаллической решётке, произведя нагрев. Напротив, если энергии недостаточно, она передастся от кристаллической решётки, что вызовет охлаждение спая.

Если тип проводимости полупроводников в термопаре неодинаков, эффект объясняется иначе. Электрон, попадая в p-материал занимает на энергетическом уровне место дырки (положительного носителя заряда). В результате теряет кинетическую энергию движения и разницу между нынешним и прошлым состоянием. Высвобожденное количество идёт на образование свободных носителей по обе стороны p-n-перехода. Остаток сообщается кристаллической решётке, от которой идёт нагрев. Если энергия в начальный момент меньше, начнётся охлаждения спая. Рекомбинирующие носители восполняются источником питания.

Количество теплоты, выделенное или поглощённое, пропорционально прошедшему через проводник заряду. Коэффициент в формуле линейной зависимости носит имя Пельтье. Аналогичная величина введена и для термоэлектричества, носит имя Зеебека. Из формулы следует, что количество выделившейся теплоты, в отличие от эффекта Джоуля-Ленца, пропорционально первой степени электрического тока (определяющего перенесённый заряд).

Эффект Томсона

На основании данных о коэффициентах Зеебека и Пельтье лорд Кельвин (Томсон) предсказал в 1856 году новый эффект: нагретый в центре проводник при пропускании электрического тока охлаждается с одной стороны и становится горячее с другой. Теоретические данные подтверждены опытным путём, открыв дорогу для создания климатической техники и прочего.

Идея лорда Томсона: если вдоль проводника присутствует градиент температуры (см. Электрическое поле), при протекании тока начнётся перенос тепла. Это устройство работает по принципу теплового насоса. Переносимая мощность пропорциональна градиенту: чем круче график изменения температуры по длине проводника, тем больший тепловой эффект проявляется.

Коэффициент пропорциональности в формуле носит имя Томсона и связан с коэффициентами термоэлектричества и Пельтье. Выше авторы привели объяснения согласно кинетической (микроскопической) теории, оперирующей уровнями энергетических состояний носителей заряда. Лорд Кельвин придерживался термодинамической (макроскопической) концепции, где во внимание принимаются глобальные потоки и силы. Это различие применимо ко множеству отраслей физики. К примеру, закон Ома для участка цепи возможно рассматривать как вариант термодинамического взгляда на вещи.

Читайте также:  Установка электронного или бесконтактного зажигания на ВАЗ 2106 подключение и настройка

Называют и общие черты. В термодинамической концепции массово применяются константы: речь о коэффициенте теплопроводности (закон Фурье) и изотермической проводимости (закон Ома).

Следствия

Ряд связанных с обсуждаемой темой полезных законов:

  1. В замкнутой цепи из однородного материала за счёт температуры электрический ток поддерживаться не может. Это утверждение носит имя немецкого физика Магнуса. Порой именуется законом однородной цепи.
  2. Закон промежуточных металлов гласит, что алгебраическая сумма термо-ЭДС замкнутого контура, состоящего из любого количества сегментов разнородных проводящих материалов равна нулю при условии, что температура участков одинаковая.

Использование термоэлектрических и электротермических эффектов

Долгое время прямой и обратный термоэлектрический эффект не находили применения, полезная величина оказывалась слишком мала. Постепенно физики создали сплавы свойства которых на два порядка перекрывают чистые металлы, использованные Пельтье и Ленцом. Теперь термоэлектричество находит применение. Вспомним термостат холодильника либо термоэлектрические холодильники без движущихся частей. Гораздо интереснее космическая отрасль, где явление применяется для охлаждения фоторезисторов: при понижении температуры лишь на 10 градусов чувствительность подобных датчиков вырастает на порядок.

Дополнительным плюсом описанных технических решений становятся компактность и малое потребление энергии: при весе 150 г установка охлаждает терморезистор на 50-60 градусов. В бытовой электронике эффектом Пельтье поддерживается нормальный режим процессоров в системном блоке персональных компьютеров. Да, стоит техническое решение недёшево, зато бесшумность гарантирована. К примеру, энтузиасты с 2010-х годов конструируют холодильники в домашних условиях. Высокого КПД не удаётся добиться из-за больших потерь через корпус. Но с появлением новых изолирующих строительных материалов положение дел улучшится.

Интересно, что при изменении направления электрического тока эффект начинает работать в противоположную сторону. Возможен нагрев. На базе описанных эффектов создают термостаты, отслеживающие температуру до тысячных долей градуса. Среди перспективных направлений отмечают бытовые кондиционеры и прочие системы охлаждения. Самым заметным недостатком считается цена. И не нужно забывать, что КПД кондиционера, как правило, больше 1, работает этот агрегат по принципу теплового насоса. Пусть эффективность резко падает с ростом температуры окружающей среды, термопары пока сильно отстают от традиционных методов охлаждения со своими 10%.

Высказываются иные мнения. Академик Иоффе, отдельные сентенции которого использованы в приведённом топике, предложил создавать системы для обогрева и охлаждения помещения по типу сплит-систем. В этом случае возникает осложнение, как с типичными кондиционерами, но КПД достигает 200%. Смысл: при обогреве, допустим, поглощающий тепло спай размещается снаружи, а выделяющий – в помещении. Качать из мороза жар нелегко, потому у методики присутствуют ограничения. Однако не запрещено на основе указанной методики создавать тепловые насосы.

К безусловным плюсам климатических систем, использующих элемент Пельтье, относится возможность работы в обратном направлении. Летом печка станет кондиционером. Следует лишь изменить направление протекания тока. Известны противоположные наработки, призванные превратить солнечное тепло в электрическую энергию. Но пока подобные конструкции изготавливают на основе кремния, и термопарам не находится места.

Материалы для создания термопар

Очевидно, обычные металлы для создания мощных систем не годятся. Требуются пары с мощностью от 100 мкВ на 1 градус. В последнем случае достигается высокий КПД. Материалами становятся сплавы висмута, сурьмы, теллурия, кремния, селена. К недостаткам компонентов относятся хрупкость и сравнительно малая температура работы. Низкий КПД добавляет ограничений, но с внедрением нанотехнологий появляется надежда, что привычные рамки окажутся преодолены. Учёные среди перспективных направлений называют разработку принципиально новой полупроводниковой базы с поистине уникальными свойствами, включая точное значение энергетических уровней материалов.

Что такое элемент Пельтье? Термоэлектрический модуль

Элементом Пельтье называют термопару, иначе говоря, устройство изменяющее температуру и работающее в соответствии с одноимённым принципом Пельтье, то есть, демонстрируя разность температур, возникающую с момента подачи электроэнергии. В англоязычных источниках фигурирует в роли термоэлектрического охладителя. Обратный данному эффекту носит название эффекта Зеебека.

Принцип работы устройства

Элемент Пельтье функционирует благодаря взаимодействию одного токопроводящего материала с другим, отличным по энергетическому уровню электронов в проводящей области. Прохождение по такому каналу связи наделяет электрон большим энергетическим запасом, что после позволяет ему перейти в проводящую область с более высоким энергетическим уровнем. Поглощение этой энергии приводит к понижению температуры в точке соединения проводников. Когда же происходит обратное движение тока, контакт нагревает, что находит выражение в виде стандартного теплового эффекта.

При условии, что по одной стороне подключён теплоотвод, в момент эксплуатации радиаторной системы вторая сторона даёт сильное охлаждения (до десятков градусов ниже температурного уровня окружающей среды). Между величиной тока и степенью охлаждения наблюдается прямая зависимость. При смене полярности также меняются положениями стороны нагрева и охлаждения.

Когда элемент Пельтье взаимодействует с деталями, выполненными из металла, то оказываемый им эффект уменьшается во много раз, и температурный контраст становится мало заметен под действием разнообразных явлений связанных с теплопроводностью цепи. По этой причине практическое применение подразумевает использование сразу двух полупроводников.

Сочетать термопары можно в любых количествах в пределах сотни, что делает возможным создание элемента Пельтье любой холодильной мощности.

Термоэлектрический модуль

Особенно явно эффект Пельтье можно наблюдать при использовании p- и n- полупроводников. В соответствии с направлением электротока при переходе через p-n-соединения происходит поглощение, либо выделение энергии.

Именно такая конструкция применяется в ТЭМ (термоэлектрическом модуле). Единичный элемент термоэлектрического модуля – это термопара, конструкция которой представляет собой объединение p- и n- проводника. Если последовательно соединить несколько подобных элементов, то поглощение теплоты будет происходить на n-p-контакте, а выделение на p-n-контакте. В результате возникает уже описанная ранее ситуация с разностью температур. Согласно общепринятому принципу горячей является та сторона, к которой подведены провода и на схеме она всегда расположена внизу.

Читайте также:  Замена водительского удостоверения в связи с окончанием срока в 2020 году

Рис.1: Термоэлектрический модуль Пельтье

В ТЭМ термопары фиксируются между парой пластин из керамических материалов. Каждая из веток спаивается с медными проводящими площадками (шинками), которые в свою очередь скрепляются с теплопроводящим материалом, например, оксидом алюминия.

Определять уровень рабочего напряжения модуля следует, исходя из количества составных элементов. Наиболее распространённым вариантом является 127-парные модульные конструкции с наибольшим уровнем напряжения в 16 Вольт. Но для их работы обычно достаточно 75% от этого значения. Мало того именно эта цифра является наиболее подходящей, поскольку отвечает и требованиям к рабочим условиям, и является достаточно экономичной. При повышении напряжения мощность почти не увеличится, а вот энергопотребление ощутимо возрастёт.

Применение на практике

На сегодняшний день применение элемента Пельте особенно актуально в устройствах следующих типов:

  • Холодильники;
  • Кондиционеры;
  • Автомобильные охладители;
  • Кулеры для воды;
  • Видеокарты для персонального компьютера.

В целом, можно сказать, что элемент Пельтье стал неотъемлемой частью разнообразных холодильных и кондиционирующих систем. Использование этого устройства является отличным подходом к решению проблемы перегрева оборудования. В настоящее время элемент Пельтье также может быть использован для охлаждения акустической и звуковой системы, поскольку его работа является совершенно бесшумной и идеально подходит для таких целей.

Есть несколько качеств элемента Пельтье, которые пользуются большим спросом:

  • Они обеспечивают достаточно мощную теплоотдачу;
  • Имеют весьма скромные размеры, что позволяет использовать их практически в любых устройствах;
  • Способны к сохранению одного и того же температурного режима на протяжении продолжительного срока (благодаря радиаторам);
  • Отличаются изрядной долговечность, поскольку укомплектованы из ряда цельных недвижимых компонентов.

Самая простая составляющая элемента выглядит как пара медных проводников, к которым подключены контакты, соединительные провода, оснащённые изолирующим элементом (для его изготовления используется нержавеющая сталь или керамика).

Как самостоятельно изготовить элемент Пельтье

Простота конструкции этого устройства располагает к тому, чтобы изготовить его самостоятельно. Тем более, что сфера его практического применения практически не ограничена: холодильники, кондиционеры и другая техника.

Предварительно следует заготовить пару пластин из металла, а также понадобится проводка с контактами. Прежде всего, запаситесь проводниками, которые будут установлены рядом с основанием устройства. Для этих целей лучше всего подойдут PP-проводники.

Далее, не забудьте, что на выходе должны быть установлены полупроводники, которые будут подавать тепло к верхней пластине. Для монтажа элемента потребуется паяльник. На финальном этапе понадобится подключить пару проводов. Один локализуется около основания и надёжно крепится рядом с крайним проводником. Значимо, чтобы не было никаких соприкосновений с пластиной.

Место крепления второго проводника располагается рядом с верхней частью и закрепляется аналогичным образом – у крайнего проводника.

Для проверки элемента на предмет работоспособности нужно будет воспользоваться тестером. Прибор подсоединяется к проводам и производится замер вольтажа. Стандартный показатель отклонения напряжения достигает примерно 23 Вольт.

Мощность элемента Пельте находится в прямой зависимости от его габаритов, это следует учитывать при самостоятельной сборке или монтаже. Установка недостаточно мощного элемента не предотвратит поломку техники, а лишь отсрочит её. В то же время избыточная мощность вызывает падение уровня температуры до критического уровня, когда влага, находящаяся в воздухе может начать конденсировать и оседать на поверхности устройств, что особенно опасно для электронных приборов.

Помимо этого, другая сторона модуля является источником достаточно большого количества тепла, поэтому для обеспечения его безопасной работы требуется вентилятор довольно большой мощности.

Как изготовить генератор на основе элемента Пельтье?

Генераторы на основе элемента Пельтье особенно интересуют людей, которые ввиду достаточно продолжительной отрезанности от цивилизации нуждаются в простом и доступном источнике энергии. Также они широко применяются при критическом перегреве деталей персонального компьютера.

Рис.2: Генератор на основе элемента Пельтье.

Элементы Пельтье имеют достаточно интересный принцип действия, но помимо этого обладают одной любопытной особенностью: если к ним прилагается разность температур, то они продуцируют электричество. Один из вариантов генератора на базе этого устройства предполагает следующую конструкцию:

По двум трубкам (одна для входа, другая для выхода) движется пар, который направляется в полость теплообменника, сконструированный из пластины (материал: алюминий), имеющей толщину 1 см.

К каждому отверстию теплообменника подведено соединение с одним каналом. Габариты теплообменника точно дублируют габариты элементов Пельтье. Два элемента фиксируются на двух сторонах теплообменника с помощью четырёх винтов (по 2 на каждую сторону). В результате, благодаря отверстиям и канальцам теплообменника формируется полноценная система сообщающихся отделов, через которые проходит пар. Двигаясь вперёд, пар входит в камеру по одной трубке и выходит через другую, двигаясь к следующей камере. Транслируемое паром тепло достаётся элементам Пельтье, когда пар непосредственно соприкасается с их поверхностью , а также с материалом теплообменника.

Чтобы вплотную прижать элементы к корпусу теплообменника , а также для организации отвода тепловой энергии на «холодную» сторону применяются пластины из алюминия на 0,5 см в толщину. На последнем этапе вся конструкция герметизируется силиконовыми герметиками.

После этого через трубки пускают пар, а конструкция погружается в холодную воду. Вся система целиком начинает работать. Электрический ток будет образовываться до тех пор, пока разница между температурой «горячей» и «холодной» сторон не сократится до минимума.

Есть и более элементарный метод.

Элемент Пельтье выводами подсоединённый к зарядному телефонному кабелю закрепляется на алюминиевом радиаторе (который будет контактировать с «холодной» стороной) с помощь герметика. Сверху на устройство ставится любой горячий предмет, например, кружка с горячим чаем. Через пару секунд телефон можно ставить на зарядку. Зарядка будет продолжаться, пока чай не остынет.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта , буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Ссылка на основную публикацию
Adblock detector