Электронный вольтметр устройство прибора для измерения напряжения и конструкция электромеханического

Принцип работы цифрового вольтметра 1

8.4 Цифровые вольтметры

По виду измеряемой величины цифровые вольтметры делятся на: вольт­метры постоянного тока, переменного тока (средневыпрямленного или сред­него квадратического значения), импульсные вольтметры — для измерения параметров видео- и радиоимпульсных сигналов и универсальные вольтмет­ры, предназначенные для измерения напряжения постоянного и переменного тока, а также ряда других электрических и неэлектрических величин (сопро­тивления, температуры и прочее).

Принцип работы цифровых измерительных приборов основан на дискретном и цифровом представлении непрерывных измеряемых величин. Упрощенная структурная схема цифрового вольтметра приведена на рис.8.10.Схема состоит из входного устройства, АЦП, цифрового отсчетного устройства и управляющего устройства.

Рис.8.10.Упрощенная структурная схема цифрового вольтметра.

Входное устройство содержит делитель напряжения; в вольтметрах пере­менного тока оно включает в себя также преобразователь переменного тока в постоянный.

АЦП преобразует аналоговый сигнал в цифровой, представляемый циф­ровом кодом. Процесс аналого-цифрового преобразования составляет сущ­ность любого цифрового прибора, в том числе и вольтметра. Использование в ацп цифровых вольтметров двоично-десятичного кода облегчает обратное преобразование цифрового кода в десятичное число, отражаемое цифровым отсчетным устройством.

Цифровое отсчетное устройство измерительного прибора регистрирует измеряемую величину. Управляющее устройство объединяет и управляет всеми узлами вольтметра.

По типу АЦП цифровые вольтметры могут быть разделены на четыре ос­новные группы:

• кодоимпульсные (с поразрядным уравновешиванием);

В настоящее время цифровые вольтметры строятся чаще на основе кодо-импульсного и времяимпульсного преобразования.

АЦП вольтметров преобразуют сигнал постоянного тока в цифровой код, поэтому и цифровые вольтметры также считаются приборами постоянного тока. Для измерения напряжения переменного тока на входе вольтметра ста­вится преобразователь переменного напряжения в постоянное напряжение, чаще всего это детектор средневыпрямленного значения.

Проанализируем основные технические характеристики среднестатисти­ческого цифрового вольтметра постоянного тока:

• диапазон измерения: 100 мВ, 1 В, 10 В, 100 В, 1000 В;

• порог чувствительности (уровень квантования амплитуды напряжения или единица дискретности) на диапазоне напряжения в 100 мВ может быть 1мВ, 10ОмкВ, 10мкВ;

• количество знаков (длина цифровой шкалы) — отношение максималь­ной измеряемой величины на этом диапазоне к минимальной; например:

диапазону измерения 100 мВ при уровне квантования 10 мкВ соответствует 104 знаков;

• входное сопротивление электрической схемы — очень высокое, обычно более 100 МОм;

• помехозащищенность — так как цифровые вольтметры обладают высо­кой чувствительностью, очень важно обеспечить хорошую помехозащищен­ность. Упрощенная структурная схема, поясняющая принцип возникновения по­мех на входе цифрового вольтметра показана на рис. 8,11.

Помеха общего вида возникает в электрической схеме из-за несовершенства источников питания на частотах 50 и 100 Гц, создает падение напряже­ния на сопротивлении r0 соединительного провода и переходит во входную цепь вольтметра, если сопротивление утечки Rут между клеммами и корпусом невелико. Если же одну из клемм прибора заземлить, то доля помехи общего вида, переходящая во входную цепь ,увеличится. Поэтому при измерении малых сигналов пользуются изолированным от земли (корпуса) входом вольтметра.

Рис.8.11. Схема возникновения помех на вход цифрового вольтметра

Здесь Ес — источнике сигнала; Енв — помеха, приложенная ко входу вольт­метра (помеха нормального вида, наводки); Еов — помеха общего вида, воз­никающая из-за разности потенциалов корпусов источника сигнала и вольт­метра; Ri — внутренне сопротивление источника сигнала; Rвх —входное сопротивление вольтметра.

Способы уменьшения влияния помех:

• использование экранированных проводов и изолированного входа вольтметра;

• применение-интегрирующих вольтметров; при этом период помехи Uпом(t)= Umпомsinωt кратен времени измерения и помеха устраняется по периоду согласно формуле:

Uпом = Umпомsinωtdt0;

• включение на входе вольтметра фильтра с большим коэффициентом по­давления помехи (60… 70 дБ).

В последнем случае коэффициент подавления помехи определяется сле­дующим образом: Кпод = 20lg (Uп вх/ Uп вых ), где Uп вх — амплитуда помехи на входе фильтра, Uп вых – амплитуда помехи на его выходе.

Точность цифровых вольтметров. Распределение погрешности по диапа­зону измерения напряжений определяется пределом допускаемой относи­тельной основной погрешности , характеризующей класс точности средства измерения:

Δ =

где и— измеряемое напряжение; Uк— конечное значение диапазона измере­ний; с, d — соответственно относительные приведенные суммарная и адди­тивная составляющие погрешности.

Быстродействие. Современные схемы АЦП, применяемые в цифровых вольтметрах, могут обеспечить очень большое быстродействие, однако из соображений точной регистрации полученного результата и усреднения сете­вой помехи у цифровых вольтметров оно уменьшается примерно до 20… 50 измерений в секунду.

Кодоимпульсные цифровые вольтметры

В кодоимпульсных цифровых вольтметрах (в вольтметрах с поразрядным уравновешиванием) реализуется принцип компенсационного метода измере­ния напряжения. Упрощенная структурная схема такого вольтметра пред­ставлена на рис. 8.12.

Измеряемое напряжение U‘x, полученное с входного устройства, сравнивается ,с компенсирующим напряжением Uк вырабатываемым прецизионным делителем и источником опорного напряжения. Компенсирующее напряже­ние имеет несколько уровней, квантованных в соответствии с двоично-десятичной системой счисления. Например, двухразрядный цифровой вольт­метр, предназначенный для измерения напряжений до 100 В, может включать следующие уровни напряжений: 80,40,20, 10, 8,4,2,1 В.

Сравнение, измеряемого U‘x и компенсирующего Uк напряжений произво­дится последовательно по командам управляющего устройства. Процесс сравнения напряжений показан на рис. 8.13. Управляющие импульсыUy че­рез определенные интервалы времени переключают сопротивления прецизи­ онного делителя таким образом, что на выходе делителя последовательно возникают значения напряжения: 80, 40, 20, 10, 8, 4, 2, 1 В; одновременно к соответствующему выходу прецизионного делителя подключается устрой­ство сравнения.

Если Uк > U’x, то с устройства сравнения поступает сигнал Uср на отклю­чение в делителе соответствующего звена, так, чтобы снять сигнал Uк . Если Uк U’x. Интегрирование опорного напряжения продолжается до тех пор, пока выходное напряжение интегратора снова не станет равным нулю (при этом T2 = t2 – t1). Поэтому в течение времени второго интервала на выходе интегратора формируется спадающее напряжение: Uи = – Uионdt. При этом длительность интервала интегрирования T2 тем больше, чем выше амплитуда измеряемого напряжения U’x .

В момент времени t = t2 напряжение Uи на выходе интегратора становится равным нулю и устройство сравнения (второй вход соединен с корпусом) выдает сигнал на триггер, возвращая его в исходное состояние. На его выхо­де формируется импульс U т длительностью T2, поступающий на вход схемы И. На другой ее вход подается сигнал Uгси с генератора счетных импульсов.По окончании импульса U т , поступающего с триггера, процесс измерения прекращается.

Читайте также:  Как сделать полиуретановую форму своими руками

Преобразование временного интервала T2 в эквивалентное число импуль­сов N осуществляется так же, как и в предыдущем методе — путем заполне­ния интервала T2 импульсами генератора счетных импульсов и подсчета их числа счетчиком. На счетчике, а значит и на цифровом отсчетном устройстве записывается число импульсовN(Uсч), пропорциональное измеряемому напряжению Ux :

U’х dt Uионdt = 0

Это выражение приводит к следующим формулам:

Т1= Т0К; T2 = Т0 N; U’х Т1= Uион T2 .

Из последних соотношений получим U’х = Uион N/K

Из приведенных соотношений видно, что погрешность результата изме­рения зависит только от уровня образцового напряжения (а не от нескольких, как в кодоимпульсном приборе). Однако здесь также имеет место погреш­ность дискретности. Достоинство прибора — высокая помехозащищенность,

так как он интегрирующий. На основе схем с двойным интегрированием вы­пускают приборы с более высоким классом точности, чем приборы с ГЛИН. Вольтметры этого типа имеют погрешность измерения 0,005.. .0,02 %.

Цифровые вольтметры наивысшего класса точности создаются комбинированными: в схемах сочетаются методы поразрядного уравновешивания и времяимпульсного интегрирующего преобразования.

Большинство серийных цифровых вольтметров переменного тока строят с применением преобразователей переменного тока в постоянный (детекторов) средневыпрямленного и среднего квадратического значения. Свойства этих приборов будут во многом определяться детекторами.

kapus.ru

Портал о строительстве и ремонте

Принцип работы электронных вольтметров переменного напряжения. Структурные схемы и принцип действия электронных вольтметров

Если для измерения постоянного напряжения Вы пользуетесь вольтметром с измерительной головкой магнитоэлектрической системы, то обращали внимание, что при неправильной полярности подключения щупов вольтметра к источнику измеряемого напряжения, стрелка измерительной головки отклоняется в обратную сторону за нуль и зашкаливает. Если таким прибором попытаться измерить переменное напряжение частотой около 50 Гц и выше, стрелка может слегка дёрнуться в первоначальный момент времени, но после будет указывать на ноль. Ненулевое значение будет говорить о наличии постоянной составляющей напряжения.

Самый простой способ выйти из положения – преобразовать переменное напряжение в постоянное, то есть выпрямить его. Это легко сделать с помощью одного единственного диода, как показано в статье . Если желаете измерить напряжение более-менее точно, для выпрямления можно использовать .

Схемы измерения

Причина такого поведения магнитоэлектрического измерительного прибора при измерении переменного напряжения проста. В таких приборах присутствует постоянный магнит, а направление отклонения стрелки прибора зависит от направления протекания тока в катушке поворачивающейся рамки. В момент положительного полупериода стрелка прибора пытается отклониться в одну сторону, отрицательного – в другую. При достаточно частой смене полярности, например как в потребительской сети 50 Гц, стрелка просто не успевает отклониться в одну сторону, как вдруг ей нужно отклоняться в обратную. При этом можно заметить просто дрожание стрелки, или не заметить ни чего.

Измерительные головки электромагнитной системы в устройстве своём не имеют постоянного магнита, а их принцип действия основан на явлении втягивания предмета из намагничивающегося материала в область центра катушки с током. Направление действия катушки с током на намагничивающийся объект не зависит от направления тока в обмотке катушки. Поэтому такие приборы легко измеряют как постоянный, так и переменный ток или напряжение.

Если у Вас возникла необходимость измерить напряжение в сети переменного тока, а под рукой только прибор с измерительной головкой магнитоэлектрической системы (с постоянным магнитом), то можно просто выйти из положения, имея под рукой хотя бы один выпрямительный диод с обратным напряжением не ниже амплитудного значения предположительно измеряемой величины. Для этого рассмотрим две схемы.

Схема с одним диодом

Менее точный, но предельно простой вариант. Всё, что нужно, это подключить один из щупов прибора через выпрямительный диод. При этом следует учесть, что к клемме приора с положительной полярностью диод должен быть подключен катодом (к отрицательной – анодом). При действии положительного полупериода стрелку будет отклонять измеряемая величина напряжения в нужную нам сторону. Во время отрицательного полупериода диод будет запираться, разрывая цепь прибора с источником напряжения, которое уже не подействует на стрелку прибора в обратном направлении.

Особенность измерения схемой с одним диодом

Определение значения величины. При измерении по рассмотренной схеме следует учесть, что прибор реагирует только во ремя одного полупериода, и покажет величину в два раза меньше действительного действующего значения напряжения. То есть, если при измерении напряжения такой схемой прибор показал значение 110 В, это показание нужно умножить на два, и получите то, что Вы измерили.

Выбор диода. Для правильного выбора диода нам нужно обязательно учесть обратное напряжение диода, которое должно быть больше амплитудного значения измеряемой величины, иначе диод может пробить, и прибор перестанет показывать, или может врать на несколько порядков. Например, мы собираемся измерить напряжение в розетке. При указании класса напряжения оборудования указывается действующая величина. Чтобы узнать амплитудное значение, нужно действующую величину умножить на корень из двух: . Напряжение потребительской сети 220 В. Амплитуда напряжения будет 220×1,41=311 В. В нашем случае вполне подойдут выпрямительные диоды с обратным напряжением 400 В и выше. Ниже не желательно, т.к. в случае перенапряжения в сети, амплитуда напряжения может превысить обратное напряжение диода, произойдёт необратимый пробой p-n перехода и диод выйдет из строя.

Кроме того, не выбирайте мощные диоды, чем меньше мощность, тем лучше. У мощных диодов большая площадь p-n перехода, который в запертом состоянии может вести себя как обкладки конденсатора. Таким образом, в отрицательный полупериод может сказаться ёмкостная проводимость, и показания прибора окажутся несколько занижены. Чем больше частота измеряемого напряжения, тем больше влияние, особенно при использовании высокоомных чувствительных измерительных головок.

Схема с диодным мостом

Более сложный вариант, но позволяющий измерять электрические величины более точно. Для этого потребуется 4 диода, либо готовый диодный мост. Принцип работы схемы аналогичен первому варианту, но здесь измерительный элемент чувствует оба полупериода напряжения, которые действуют на него однонаправлено, и прибор показывает действующее значение напряжения. То есть, показания прибора будут соответствовать действительности.

Читайте также:  25 счет бухгалтерского учета что это, описание и проводки

Выбор диодов или диодного моста аналогичен первому случаю.

Меры предосторожности

При модификации Вашего прибора указанными способами, уделите особое внимание безопасности. Диоды или диодный мост используемые в схемах, а так же контактные места рассечки проводов, щупов прибора, клеммы вольтметра должны быть надёжно заизолированы, чтобы предотвратить поражение электрическим током при случайном прикосновении к токоведущим частям прибора во время измерения.

Обобщенная структурная схема вольтметра постоянного тока приведена на рис. 1,а. Она включает входное устройство, усилитель постоянного тока А1 и электромеханический измерительный прибор PV1. Входное устройство предназначено для создания высокого входного сопротивления, чтобы уменьшить влияние вольтметра на измеряемую цепь. Оно состоит из делителей напряжения – аттенюаторов, с их помощью изменяют пределы измеряемых величин. В некоторых вольтметрах входное устройство содержит эмиттерный повторитель (или истоковый – при использовании полевых транзисторов).

К УПТ предъявляются высокие требования: малый дрейф нуля, высокая стабильность усиления, малый уровень шумов.

В вольтметрах постоянного тока высокой чувствительности входной сигнал преобразуется в переменный, усиливается и затем вновь преобразуется в напряжение постоянного тока.

Обобщенная структурная схема вольтметра переменного тока показана на рис. 1,б. Принцип действия такого вольтметра состоит в преобразовании переменного напряжения в постоянное, которое измеряется стрелочным электромеханическим прибором. В качестве преобразователей переменного напряжения в постоянное используются пиковые (амплитудные) детекторы, детекторы среднеквадратического и средневыпрямленного значения напряжения. Применение того или иного преобразователя переменного тока в постоянный определяет способность вольтметра измерять то или иное значение напряжения.

На обобщенной схеме показаны усилитель переменного напряжения А1 и УПТ А2, включенный после преобразователя V1. Однако в практических приборах применение обоих усилителей встречается очень редко. Используется либо додетекторное усиление, либо последетекторное. В высокочувствительные измерители напряжения вводят усилители переменного напряжения, обычно широкополосные, с полосой пропускания от единиц герц до десятков мегагерц.

Для обеспечения широкой области рабочих частот вплотьдо 1 ГГц усилители переменного напряжения не применяют, а применяют усилители постоянного тока.

ЦИФРОВЫЕ ВОЛЬТМЕТРЫ

В цифровых вольтметрах переменного напряжения используется аналоговое преобразование измеряемого переменного напряжения в постоянное. В импульсных цифровых вольтметрах находят применение специальные АЦП – амплитудно-временные преобразователи. В вольтметрах с уравновешивающим преобразованием используются соответствующие АЦП.

Цифровые вольтметры прямого преобразования более просты по устройству, но имеют меньшую точность. По используемому способу аналого-цифрового преобразования они бывают: с временным, временным с интегрированием и частотным преобразованием. Интегрирующие цифровые вольтметры, измеряющие среднее значение напряжения за время измерения, обладают повышенной помехозащищенностью. Входное устройство (рис. 2) содержит делители напряжения и предназначено для расширения пределов измерения. Оно обеспечивает достаточно высокое входное сопротивление вольтметра. Устройство определения полярности измеряемого напряжения основано на определении последовательности срабатывания двух устройств сравнения. На первое подается пилообразное напряжение, принимающее значения от –U до +U, и измеряемое напряжение. Устройство срабатывает (выдает импульс) в момент равенства напряжений. Другое устройство сравнения срабатывает в момент равенства пилообразного напряжения нулю. Сигнал полярности подается в цифровое отсчетное устройство. Устройство автоматического выбора пределов измерения сравнивает измеряемое напряжение с набором напряжений и управляет делителем.

Цифровые вольтметры с уравновешивающим преобразованием строятся в основном по двум типам структурных схем: с использованием программирующего устройства и цифрового счетчика. В них измеряемое напряжение уравновешивается дискретно-изменяющимся компенсирующим образцовым напряжением. На рис. 3,а,б показаны эти структурные схемы.

Рассмотрим работу вольтметра, построенного по схеме с цифровым счетчиком (рис. 3,б). Тактовые импульсы поступают на цифровой счетчик через управляющее устройство, определяющее порядок заполнения ячеек. Счетчик изменяет состояние элементов преобразователя кода и компенсирующее напряжение. Измеряемое напряжение, поступающее на устройство сравнения, сравнивается с компенсирующим напряжением. В зависимости от знака этой разности на выходе устройства сравнения управляющее устройство либо продолжает пропускать тактовые импульсы на счетчик, либо нет. Новый цикл измерений начинается с момента сбрасывания на нуль показаний счетчика. В этот же момент в исходное состояние приводится компенсирующее напряжение и на счетчик начинают поступать счетные импульсы.

2. ИССЛЕДОВАНИЕ ВОЛЬТМЕТРОВ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ

1. Изучить принцип действия, устройство и основные метрологические характеристики электронных вольтметров с преобразователями амплитудного (пикового), среднеквадратического и средневыпрямленного значений напряжения.

2. Изучить особенности измерения напряжения сигналов различной формы.

3. Получить практические навыки работы с измерительными приборами.

Вольтметр переменного напряжения типа В7-15 (или ВУ-15) с амплитудным (пиковым) детектором.

Вольтметр переменного напряжения типа В7-27/А/1 (или В7-16) с преобразователем средневыпрямленного значения.

Вольтметр среднеквадратического значения (измеритель нелинейных искажений типа С6-11 в режиме измерения напряжения).

Вспомогательные приборы и принадлежности

Генератор измерительных сигналов (синусоидальной формы) низкочастотный Г3-109.

Генератор измерительных сигналов (синусоидальной формы) высокочастотный Г4-158.

Генератор прямоугольных импульсов с изменяемым коэффициентом заполнения (вспомогательный генератор).

Электронно-лучевой осциллограф С1-67.

Эталонный резистор с номиналом (1,00 ± 0,05) МОм.

1. Исследовать влияние формы сигнала на показания электронных вольтметров с различными типами преобразователей.

2. Оценить входное сопротивление вольтметра В7-27/А/1 (или В7-16)

и его влияние на погрешность измерения напряжения.

3. Исследовать влияние параметров входной цепи вольтметра и соединительных проводов на частотный диапазон измерения напряжения с использованием одного из исследуемых вольтметров

– самого широкополосного В7-15 (или ВУ-15).

Указание. Количественные характеристики (параметры) переменного периодического напряженияu (t ) описываются следующими функционалами:

1. Среднее значение (постоянная составляющая) напряжения

где T — интервал интегрирования. Численное значениеТ в вольтметрах имеет порядок (0,2,…,1) с. При расчетах среднего значения и других характеристик периодического сигнала в качестве интервалаТ удобно взять период сигнала.

2. Максимальное и минимальное значения напряжения

, Uмин = min

Размах U p =U макс -U мин .

Пиковое отклонение “вверх” напряжения

U вв= U макс — U ср.

Пиковое отклонение “вниз” напряжения

3. Среднеквадратическое (действующее) значение напряжения

4. Средневыпрямленное значение напряжения

В электронных вольтметрах переменного напряжения используют три типа преобразователей:

Преобразователь амплитудного (пикового) значения, выходное напряжение которого пропорционально максимальному значению напряжения измеряемого сигналаU m (пиковому отклонению напряжения “вверх”, если

анод диода подключен к входу преобразователя или пиковому отклонению напряжения “вниз” — при обратном подключении диода);

Читайте также:  Проверка и корректировка фаз ГРМ двигателей ЗМЗ

Преобразователь среднеквадратического значения (на основе термоэлектрических, диодных, транзисторных или оптронных преобразователей), выходное напряжение которого пропорционально среднеквадратическому (действующему) значению измеренного напряжения

Преобразователь средневыпрямленного значения, выходное напряжение которого пропорционально среднему значению выпрямленного напряжения U св (среднему значению модуля напряжения).

Если у вольтметра закрытый вход, т.е. постоянная составляющая U ср

измеряемого напряжения не проходит на преобразователь, то его показания определяются только переменной составляющей сигнала.

Шкалы электронных вольтметров переменного тока (кроме импульсных) градуируют в среднеквадратических значениях напряжения сигнала синусоидальной формы. Импульсные вольтметры градуируют в амплитудных значениях синусоидального сигнала.

С учетом указанных особенностей показания вольтметров U шк определяются формулами, приведенными в табл. 2.1.

Среднеквадратическое U ск , (пиковое отклонение “вверх”)U m и средневыпрямленное значенияU св связаны между собой так называемыми коэффициентами амплитудыК А и формыК Ф следующим образом:

Um = KA · Uск ; Uск = KФ · Uсв ; Um = KA · KФ · Uсв .

Зная результат измерений, то есть значение функционала (табл. 2.1) для используемого типа преобразователя вольтметра, можно найти неизвестные параметры измеряемого напряжения. Но для этого надо правильно — в соответствии с видом функции u(t) , описывающей измеряемый сигнал, выбрать значения коэффициентовK A иK Ф . Численные значения этих

коэффициентов можно вывести с использованием формул (2.2), (2.5) и (2.6).

с преобразователем среднеквадратического значения

с преобразователем средневыпрямленного значения

Порядок выполнения работы и методические указания

1. Ознакомление с характеристиками исследуемых вольтметров

и принципами их работы (домашняя подготовка к работе)

1.1. Изучить по литературе и конспекту лекций теоретический материал,

относящийся к данной работе. Изучить описание данной работы и заготовить в рабочей тетради формы табл. 2.1-2.6 с их заголовками.

1.2. Ознакомиться по с метрологическими характеристиками исследуемых вольтметров. Заполнить табл. 2.2.

1.3. Сопоставить эти характеристики. Сделать выводы об области применения исследуемых вольтметров с точки зрения:

формы измеряемого сигнала,

диапазона измеряемых значений напряжений,

диапазона рабочих частот,

входного сопротивления и входной емкости.

Основные метрологические характеристики вольтметров

Вольтметр. Устройство, принцип работы, виды и характеристики

Вольтметр, что это такое? В первую очередь это прибор, который служит в качестве измерительного устройства величины напряжения до 1000В в сетях постоянного и переменного тока, промышленной частоты и используется в информационно-измерительных системах. Идеальный вольтметр обладает чрезвычайно высоким, бесконечным сопротивлением, за счет большого сопротивления прибора достигается наиболее высокая точность и широкие сферы использования.

Прибор предназначен для обеспечения математической и логической обработки измерений.

Виды вольтметров

Существует два вида вольтметров:

  1. Портативные или переносные вольтметры, предназначенные для проверки (тестирования) напряжения в сети. Как правило, такой прибор включается в конструкцию тестера, различаются цифровые или стрелочные приборы, кроме измерения напряжения они выполняют функцию по измерению токов нагрузки, сопротивления цепи, температуры и т. д.
    Если цифровые приборы отличаются точностью показаний то типы вольтметров, относящиеся к аналоговым (стрелочным) приборам, способны реагировать на малейшие отклонения параметров, не определяемых цифровым прибором.
  2. Стационарные приборы устанавливаются на приборных панелях в электрораспределительных щитах для контроля работы оборудования, эти приборы принадлежат к электромагнитному типу.

Классификация вольтметров

Приборы различаются по принципу действия, бывают электромеханические и электронные.

По назначению, приборы – импульсные, измеряющие сеть постоянного и переменного тока.

Как подключить вольтметр

Вольтметр включают в цепь параллельно нагрузке и источнику напряжения, это делается для того чтобы высокое сопротивление, используемое в приборе не оказывало влияние на показания прибора. Величина тока протекающего через прибор должна быть минимальной.

Рис. №1. Схема подключения вольтметра в электрическую сеть.

Технические характеристики вольтметра

Нормальная работа вольтметра возможна при температуре воздуха не превышающая 25 – 30 о С с относительной влажностью воздуха до 80% при атмосферном давлении 630 – 800мм рт. ст. Частота питающей сети 50 Гц и с напряжением 220В (частотой до 400 Гц). На измерение большое влияние оказывает форма кривой переменного напряжения питающей сети – синусоида с коэффициентом гармоник не более 5%.

Возможности прибора оцениваются при помощи следующих показателей:

  1. Сопротивление прибора.
  2. Диапазон измеряемых величин напряжения.
  3. Класс точности измерений.
  4. Предельные границы частот напряжения переменной цепи.

Принцип действия прибора

В основу работы вольтметра заложен метод аналогово-цифрового преобразования с двухтактным интегрированием. Рассмотрим работу прибора на примере В7-35. Преобразователи установленные в конструкции, измеряя величины напряжения постоянного и переменного тока, силу тока, сопротивление, преобразуют в нормализованное напряжение и при использовании АЦП преобразуют в цифровой код.

Функциональная схема цифрового вольтметра работает на использовании 4 преобразователей это:

  1. Масштабирующий преобразователь.
  2. Низкочастотный прибор, преобразующий напряжение переменного тока в постоянный ток.
  3. Преобразователь силы постоянного и переменного тока в напряжение.
  4. Преобразователь сопротивления в напряжение.

Рис. №2.Схема цифрового вольтметра

Вольтметр переменного тока

Широкополосные электронные вольтметры, используемые в сетях переменного тока, имеют свои конструктивные особенности и свойственную только им градуировку. Степень воздействия на измеряемую цепь при исследовании зависит от входных параметров комплексное, это: входное активное сопротивление (Rв), при этом сопротивление должно быть наиболее высоким, емкость на входе (Cв), она должна быть как можно меньше и индуктивность (Lпр), она вместе с емкостью создает последовательный колебательный контур, отличающийся своей резонансной частотой.

Рис. №3. Схема подключения высокочастотного вольтметра.

Измерение сопротивления вольтметром

Низкоомный вольтметр с сопротивлением не более 15 Ом пригоден для измерения сопротивлений и выполняется при помощи формулы:

Rx = Rи * (U1/U2 – 1)

Для формулы используются сопротивление вольтметра Rв, а также 1 и 2 показания вольтметра, точность измерения не всегда соответствует действительности, так как замер осуществляется без учета внутреннего сопротивления прибора. Более точный результат достигается при использовании формулы:

Rx = (Rв + r ) * (U1/U2 — 1), внутреннее сопротивление – r.

При замере каждое последующее сопротивление должно быть большим по сопротивлению вольтметра и выполнятся с фиксацией каждого замера.

Для того чтобы определить какое напряжение показывает вольтметр руководствуются шкалой вольтметра, при помощи цены деления прибора. Она определяется по верхнему пределу замеряемого значения, которое делится на количество делений шкалы.

Ссылка на основную публикацию
Adblock detector