Термоусадочная трубка своими руками устанавливаем изоляцию

О переделке кулера для винчестера в кулер для процессора своими руками

Эта заметка является продолжением статьи «О переделке кулера для винчестера в кулер для процессора». В той статье я рассказывал о своей попытке изготовления кулера для процессора без вентилятора. Охлаждаемый естественной конвекцией воздуха. Не секрет, что процессорный кулер является самым шумным компонентом компьютера. А о том, что шум неприятен и крайне вреден, для здоровья подавляющего большинства юзеров, говорить не приходится.

За основу кулера были взяты тепловые трубки, совершенно варварским методом добытые из изделия фирмы Zalman ZM-2HC2. Тепловая трубка это устройство, имеющее теплопроводность во много раз превышающею теплопроводность меди.

После неудачного испытания первой модели кулера. Было выяснено, что для правильной эксплуатации трубок их надо глубже погружать в теплосъемник. А для этого их необходимо разогнуть. В статье описывался простейший метод разгибания трубок. Но он имел ряд недостатков. Самый крупный и неприятный аспект этого метода заключался в большом проценте брака. Трубки часто переламывались.

Но прогресс не стоит на месте. И за прошедшее время моим единомышленником по «Modding, Cooling, Overclocking» — Mortis был разработан более прогрессивный и совершенный метод. Позволивший ему разогнуть все до одной трубки без досадных неудач. Для этого необходимо сделать небольшое приспособление. Приспособление состоит из отрезка алюминиевой трубки с толстыми стенками и внутренним отверстием такого диаметра, что бы тепловая трубка относительно плотно туда входила. А на торце трубки надфилем снять острую кромку на краю внутреннего отверстия и сделать небольшое закругление. Потом вставляем туда трубку и осторожно, потихоньку, постепенно, по частям разгибаем и продвигаем трубку внутрь инструмента.

Идем дальше. Ниже приведена фотография теплосъемника, который я использовал. Он состоит из двух медных пластин скрученных винтами и просверленными в них 4-х отверстий диаметра равного диаметру тепловых трубок.

И фотография рабочей модели кулера.

А это кулер в процессе тестирования 3DMark03.

Но, как выяснилось, главным недостатком второго варианта кулера являлась недостаточная площадь поверхности радиатора. Тепловые трубки прекрасно передавали тепло, а поверхности радиаторов не хватало для рассеивания тепла процессора AthlonXP Barton 2500+, работающего в штатном режиме. Существовала опасность перегрева процессора. Для нормальной работы без опасения перегрева приходилось уменьшать частоту процессора.

Конечно, для работы в Word и Интернет производительности хватало. Но было ненавистно ощущение привязанной к ноге гири. Машина способная на большее, «плетется» на пониженной скорости. Эта неприятная мысль никак не давала покоя. Дальше так продолжаться не могло. Я не выдержал, собрался и поехал в магазин «Робот», торгующий радиодеталями. У них я как-то видел широкий выбор радиаторов больших размеров по ценам, которые с огромной натяжкой можно назвать приемлемыми.

Есть в городе, где я живу и радиорынок. И, казалось бы, где купить радиаторы, если не там? Но, к сожалению, там цены на эту продукцию, мягко говоря, завышены. У меня после знакомства с финансовыми претензиями продавцов, сложилось устойчивое впечатление — они полностью уверены, что их изделия из платины. Не найдя с ними общий язык я ушел, оставив их наедине со своими сокровищами, над златом чахнуть…

Из магазина я привез радиатор размером 200 на 300 мм и толщиной 25 мм и секонд-хенд компьютерный корпус. В нем я сразу, ножницами по металлу, вырезал несколько отверстий для установки радиатора и корзины для дисководов. Захотелось расположить корпус горизонтально.

Для такого расположения корпуса пришлось опять подгибать тепловые трубки.

Теперь радиатор относительно материнской платы будет расположен так.

К большому радиатору я «прижал» трубки радиатором от старой конструкции. Естественно, в качестве термоинтерфейса была применена теплопроводная паста КПТ-8. Для хорошего контакта трубок с радиаторами, последние стянуты между собой винтами с резьбой М4. Стянуты до небольшого расплющивания тепловых трубок. Безвентиляторный блок питания тоже перешел от старой конструкции. Конфигурация осталась прежней:

CPU — Barton 2500+

GP – Radeon 8500

И остальное, без чего невозможна работа системного блока.

Не буду утомлять уважаемых читателей подробностями сборки. Она прошла, что редко случается, без приключений. Собрал — включил и сразу в BIOS, температуру смотреть. А температура процессора была 32 градуса. Но потихоньку поднималась. Но это уже в штатном режиме.

Полученные цифры никакого перегрева не предвещали, поэтому я приступил к «прогреву» системы тестом 3DMark03.

После прогона теста в течении часа, проверил температуру процессора. Она оказалась 47 градусов, при комнатной 26( на улице весна, а отопление, естественно, выключат как только начнутся заморозки). Эта цифра не показалась мне большой.

Множитель на моем процессоре не заблокирован и поэтому я взял и «превратил» его из 2500+ в 2800+, без поднятия напряжения на ядре. И стал тестировать дальше. По прошествии еще часа температура процессора поднялась до 50.

Конечно, не Арктика, но и до перегрева далеко. С чувством глубокого удовлетворения можно констатировать – опыт прошел успешно. Система работает и не перегревается. Даже с небольшим разгоном.

Переделка кулера для винчестера в кулер для процессора своими руками

Случилось так, что когда подошло время очередного апгрейда, я приобрел практически все комплектующие заново. И от уже имеющегося компьютера осталось старое, доброе, немного устаревшее железо. А отдавать его за бесценок в хищные руки скупщиков. Такая мысль казалась кощунственной. И, естественно, возникло желание собрать второй компьютер. Для Интернета, фотографий, работы в Word… Да мало ли для чего он может пригодиться? Тем более, что выдающиеся скоростные результаты такому компьютеру ни к чему, а вот тихим он быть просто обязан. А железо имелось следующее:

CPU — Barton 2500+

GP – Radeon 8500

И остальное память, HDD, то се…

Так же были у меня две такие вот штуки.

Пассивный кулер на чипсет ZM-NB47J и кулер для винчестера на тепловых трубках ZM-2HC2. Приобретено это было еще прошлым летом как раз для построения подобной системы. Кулер 2HC2 по прямому назначению я никогда не собирался использовать. Он нужен был как источник тепловых трубок, возможно несколько дороговатый. Но тишина требует жертв.

На всякий случай напомню, что тепловая трубка это устройство, имеющее очень высокую теплопроводность, во много раз выше теплопроводности меди. Про тепловые трубки писалось очень много, и я думаю не нужно загромождать статью, повторно описывая устройство и принцип ее работы.

По большому счету, меня беспокоило только охлаждение процессора. На видеокарту можно было приобрести пассивное охлаждение производства того же Zalman. Охлаждение на чипсет есть. Блок питания с пассивным охлаждением у меня тоже имелся.

Читайте также:  Лобовое стекло с подогревом 4 способа реализации, плюсы и минусы

Этот блок я изготовил из блока EuroCase 480W. Статью об этой процедуре можно посмотреть здесь http://www.overclockers.ru/lab/15862.shtml. Этот блок питания имеет небольшой заводской перекос напряжения в сторону 5 вольт и поэтому не особенно хорош для моего нового «боевого коня». В новом, мощном компьютере цепи питания процессора кормятся от 12 вольт. И поэтому выдаваемые данным блоком немного заниженные 12 вольт плохо сказываются на разгоне, при котором напряжение проседает еще больше. А на Asus A7N8 как раз наоборот. Процессор питается от 5-ти. И такой блок питания отлично подходит.

Так вот, мне нужен был пассивный кулер на процессор. Как то на сайте одного японца с предположительным ником Нумано, я видел самодельные пассивные кулеры на тепловых трубках похожих на трубки из 2HC2. Приведу фотографии взятые с этого сайта:

Устройства на этом сайте мне очень понравились, и я решил взять эти конструкции за основу. Уж больно его трубки похожи на трубки из Залмановского ZM-2HC2. Принцип действия кулера следующий – тепло от ядра процессора, имеющего небольшую площадь, тепловые трубки передают большому радиатору, и равномерно распределяют его по всей площади радиатора. Охлаждаться радиатор будет естественной конвекцией воздуха. Просто поставить на процессор огромный радиатор крайне затруднительно, да и скорости распространения тепла даже в меди будет недостаточно. И получится, что небольшая часть радиатора рядом с процессором и сам процессор будет перегреваться, а периферийные области останутся холодными. Не хватит скорости распространения тепла. Тепловые трубки я расположу веером, и они будут равномерно отдавать тепло по всей площади радиатора.

И начал я разбирать сие чудо науки и техники. Трубки были просто вставлены в отверстия двух алюминиевых пластин и «раскернены» каким-то зубилом. Немного раскачав изделие, я стал вынимать трубку. Сначала она не поддавалась, но потом неожиданно выскочила. И я заехал локтём в стену. На стене осталась аккуратная вмятина. 🙂 Помянув (нехорошо) маму г-на Залмана, стал вынимать следующую, но уже с осторожностью.

После разборки я стал пытаться разогнуть трубку. Это оказалось, на удивление непросто. Трубки очень жесткие. Пришлось приложить приличное усилие. Трубка с хрустом стала разгибаться, а потом неожиданно сломалась. Никакого шипения я не услышал. Создалось впечатление, что разряжения в трубке не было. Так же из трубки вылетела капля жидкости размером со спичечную головку. Жидкость ничем не пахла. Дегустировать ее я не стал. В трубке находится фитиль, изготовленный из сплетенных тонких латунных проволочек.

Теплосъемник я заказал на заводе, хотя при желании можно было изготовить и самому. Ничего сложного. Взять две медных пластины размером 50 на 50 миллиметров. И толщиной миллиметров пять. Стянуть их винтами и просверлить четыре отверстия диаметром 5 миллиметров. Большее число отверстий сверлить, на мой взгляд, бессмысленно. Величина ядра процессора невелика и от крайних трубок будет мало проку.

Для передачи тепла от тепловых трубок к радиатору я решил приспособить оставшиеся после разборки две алюминиевые пластины.

Собрав эту конструкцию с применением, для улучшения теплопередачи, термопасты КПТ-8, я стал примерять изделие в корпус.

Крепеж теплосъемника к сокету я вырезал ножницами по металлу, из куска перфорированной стали, оставшейся от корпуса блока питания. Для рассеивания тепла я применил два радиатора размером 150 на 50 на 60мм. Конечно, они маловаты для рассеивания тепла от Barton 2500+ на номинальной частоте и тем более разогнанного. Но для проверки и для работы на пониженной частоте вполне подойдут. Тем более, в случае успеха эксперимента я могу купить радиатор побольше. В одном радиомагазине я видел радиатор размером почти с боковую стенку мидитауэра, но и стоил он прилично. Покупать его для неизвестно чем закончившегося эксперимента я посчитал опрометчивым.

Прикручивал радиаторы через все ту же незаменимую КПТ-8.

Монтирую в корпус.

Подключаю монитор, клавиатуру… И твердой оверклокерской рукой включаю питание.

Операционная система загрузилась… через несколько минут компьютер завис, после чего он подал звуковой сигнал и отключился. Такой вот, не побоюсь этого слова, конфуз. Пришлось перезагрузиться и посмотреть в BIOS температуру процессора. А температура оказалась выше 80 градусов по подсокетному датчику и продолжала расти. Вот это сюрприз. Пришлось тут же выключить компьютер. Когда системный блок остыл, я еще раз включил компьютер и стал из BIOS наблюдать рост температуры процессора. За считанные минуты температура опять поднялась до 80градусов. Тепловые трубки нагрелись только на пару сантиметров около теплосъемника, а выше были абсолютно холодными. Было полное ощущение, что трубки тепло совершенно не передают! Как же так, я же их проверял. Один конец трубки опускал в стакан с горячей водой и через секунду другой конец нагревался. Сравнивал с обычной медной трубкой такого же диаметра. У той другой конец не нагревался вообще. Вода в стакане остывала быстрее. В чем же дело?

И тут сразу вспомнилось письмо, которое мне недавно написал Mortis.

Вот цитата из этого письма:

«Я пробовал изготовить конструкцию, аналогичную кулермастеровской (по-моему) — два обычных радиатора, соединенных ребрами друг к другу. Сначала такой вариант (трубки на термопасте)

Потом такой (трубки запаяны сплавом Вуда).

Результат в обоих случаях один, т.е. термоинтерфейс вроде как ни при чем. А происходит вот что: до 50 градусов греется только нижний радиатор, затем разогреваются трубки (но ничего не передают — верхний радиатор холодный) и только когда на трубках уже палец держать невозможно, начинает греться верхний. На процессоре к этому моменту уже около 90 градусов, понятное дело. Если же врубить вентиляторы, то верхний радиатор так и остается холодным.

В последних сериях этих трубок Залман вполне мог сменить жидкость, я свои больше года назад брал.

Меня могли подвести огрехи пайки или сверления.

Возможно, имеет значение на какую глубину трубки заходят в радиатор, т.е. площадь контакта. U-образные, которые у меня на МТХ’овской видеокарте стоят, работают в лучшем виде — там они насквозь через всю подошву радиатора идут. Или просто другой хладагент?»

Второй такой же случай. В чем же все-таки дело? В трубках? Или японец — лгун? Но трубки вне кулера работают. Еще раз проанализировав ситуацию, я пришел к выводу, что Mortis все-таки прав. Дело в глубине погружения трубок в теплосъемник. Но что бы глубже погрузить трубки в теплосъемник, их надо разогнуть. А как это сделать, если они такие хрупкие? Думал, гадал и в результате такого вот бюджетного решения, проявив недюжинную усидчивость и чудеса силы воли, трубки я все же разогнул. Хотя при этом сломал еще одну.

Читайте также:  Картинки; Профессии; для детей

Чтобы не раздавить и не пробить трубку, я в несколько раз сложил газету и через нёе, крайне осторожно, разгибал пассатижами. Очень медленно, по немногу, по всему радиусу загиба. Теперь я получил возможность поглубже поместить трубки в медный теплосъемник.

А трубки я с двух сторон «обжал» двумя радиаторами. Как у Нумано.

Монтирую второй вариант кулера в корпус и уже не так нагло и самонадеянно, а я даже сказал бы что скромно, включаю. И сразу в BIOS.

На всякий случай, понижаю частоту работы процессора до 1100 MHz. И как зачарованный смотрю на температуру процессора. Через половину часа она остановилась на 35 градусах. И больше не увеличивалась. Пощупав трубки, я убедился, что они равномерно теплые. Заработало! Теперь можно загрузить Windows и протестировать получившийся кулер. Чтобы прогреть процессор, я по привычке включил 3DMark03. Хотя, возможно, это и не очень правильно. И прокручивал его в течении часа.

Температура процессора (по подсокетному датчику, смотрел в BIOS) поднялась до 52 градусов, при комнатной температуре 25. Многовато, но в пределах нормы. Правда, на пониженной частоте. Но радиаторы я ставил заведомо невеликие. И греются они прилично.

Что ж, пора делать выводы. Радиаторы имеют явно недостаточную площадь поверхности. Я пробовал обдувать их вентилятором – температура сразу понижалась. Экспериментом с обдувом я подтвердил гипотезу, что не хватает площади поверхности. Если бы дело было в трубках, температура бы не изменилась. Целью статьи и экспериментов являлось подтверждение возможности изготовления безвентиляторного кулера на основе тепловых трубок из ZM-2HC2 в домашних условиях. Мне кажется, что это удалось. И поэтому с обдувом получившегося кулера я не возился. Теперь можно оставить изделие «как есть» и пользоваться, как говорилось выше, компьютером для Интернет и работы в Word. А можно все-таки разориться, купить большой радиатор и пользоваться в номинальном режиме, а может и разогнать…

Термотрубка своими руками

Чем заменить термоусадку

Чем заменить термоусадку Описание
Изолента Самый очевидный вариант для замены. Применяется путем наматывания на желаемый участок.

Термоусадка – это самое популярное и надежное средство для изоляции проводов. Принцип ее использования максимально прост. Несмотря на свою внешнюю простоту термоусадка обеспечивает хороший результат. В некоторых случаях приходится искать чем заменить термоусадку, поскольку ее не оказалось под рукой.

Существует несколько аналогов, однако, нужно учитывать – они не обеспечивают такого же результата, что и оригинал.

Самый очевидный вариант

Изолента – это, наверно, первое, о чем можно подумать при поисках замены для термоусадки. Она помогает защитить оголенные провода от внешних факторов, исключает вероятность контакта тела с ними.

Применять изоленту чрезвычайно просто, необходимо лишь плотно намотать ее поверх желаемого участка. Однако, изолента со временем портится, отклеивается, что важно учитывать.

Разнообразные трубки

Когда термоусадки не оказалось под рукой, для изоляции проводов можно применять полимерные, резиновые трубки подходящего диаметра и длины. Это может быть трубка от капельницы, гидроуровня. Если нет резиновой, используйте трубку из ниппеля.

Чтобы процесс применения немного облегчить, трубку нужно предварительно разогреть и надеть на провода, подождать пару минут и изоляция готова.

Иногда трубку разогревают после надевания на провод, все зависит от особенностей материала – некоторые после нагревания сразу твердеют, а другие наоборот, становятся эластичными.

Шнурки, нить

Не самый удачный, но вполне допустимый аналог. Нужно намотать нить на оголенный провод (плотно, закрыв все участки) и проклеить клеем. Такая защита допустима, если провода будут спрятаны, на них будет действовать окружающая среда.

Термоусадочная гильза

Это обязательный инструмент при работе с оптоволокном. Гильзу нужно надеть на провод и нагреть, через пару минут она примет нужную форму и обеспечивает хорошую изоляцию.

Найти замену термоусадке не так уж и сложно, ведь существует масса вариантов, нужно лишь проявить фантазию. Однако, такие «аналоги» не всегда оказываются эффективными. Поэтому если есть возможность, лучше сходить в магазин и приобрести термоусадку.

Как устанавливается термоусадочная трубка своими руками

Изоляция соединения токопроводящих элементов – основное требование безопасной эксплуатации электроустановок. Изоляционных материалов и устройств сегодня используется немало, одна из разновидностей которых это термоусадочные трубки. Пользоваться ими достаточно просто, так что сегодня все чаще их используются в процессе электрической разводки в квартирах и домах. И все же вопрос, как правильно устанавливается термоусадочная трубка своими руками, волнует многих потребителей.

Инструменты для установки изоляции

Для того чтобы термоусадка выполнила свое назначение, ее предварительно необходимо нагреть больше +120С. Она размякнет и станет эластичной. При остывании она начнет уменьшаться в размерах, плотно облегая стык, к примеру, двух соединяемых проводов. Это на все сто процентов гарантированная изоляция.

Значит, основной инструмент в этом процессе будет любой прибор, который нагреет изоляционный материал. Если разговор идет о профессиональных инструментах, то их несколько:

  • газовая горелка (пропан-бутан), главное, чтобы пламя огня было желтого цвета;
  • специальные пистолеты теплового действия;
  • строительные фены (в их комплект входит несколько насадок, с помощью которых можно регулировать мощность теплового потока).

Если разговор идет о домашнем проведении процесса изоляции, да к тому же своими руками, то можно воспользоваться спичками, зажигалкой, можно опустить термоусадочную трубку в кипяток. Здесь важно не перегреть материал, чтобы он не сгорел и не стал хрупким.

Процесс установки термоусадки своими руками

Итак, будем теперь отвечать на вопрос, как пользоваться термоусадочной трубкой? В первую очередь подготавливаются элементы, которые подлежат изоляции. Пусть это будут два конца электрического провода.

  1. Их необходимо очистить от пластиковой оболочки.
  2. С помощью растворителя обезжирить провода, используя тряпочку.
  3. Если внутренняя изоляция кабеля сделана из поливинилхлорида, то ее необходимо удалить наждачной бумагой мелкой зернистости.
  4. Если изоляция – это полиэтилен, то его можно удалить пламенем от зажигалки.

Как выбрать и приготовить термоусадку

Существует строгое правило, которое гласит, что термоусадочная изоляция должна по диаметру быть меньше, чем изолированные ею концы проводов, соединенных в скрутке. И эта разница не должна быть больше 20%, но только после усадки материала. То есть, надевается трубка на соединение свободно, а после остывания и усадки уменьшается минимум на 20%.

При выборе изоляционного материала необходимо в первую очередь обращать внимание на коэффициент усадки. Стандартный показатель основного количества изделий равен соотношению 2:1. То есть, уменьшение в размерах происходит в два раза. Правда, встречаются изделия и с более высоким коэффициентом.

Перед тем, как проводить основной процесс, саму термоусадочную трубку необходимо своими руками нагреть до половины необходимой температуры, то есть, до 50-60С. Особенно это актуально для такого изделия, как трубка большого диаметра.

Процесс усадки

Так как мы обговариваем процесс изоляции соединения концов двух проводов, то сначала трубка термоусадочная надевается на один из проводов, производится скрутка двух концов, затем изоляционное изделие смешается на сам стык. Все остальное по нижеследующей схеме:

  1. Если используется, к примеру, для нагрева специальный пистолет, то нужно установить на нем температурный режим в диапазоне 120-200С. Если вами используется трубка, китайского производства, то специалисты рекомендуют снизить температурный режим до 70-110С.
  2. Начинать нагрев, а соответственно усадку, надо с середины стыка. Прогревания нужно обязательно проводить по кругу равномерно, так чтобы центральная часть изделия плотно прижалась к металлическому стыку двух проводов.
  3. Далее, производится попеременно нагрев двух концевых частей трубки, начиная от середины, двигаясь к концу.
  4. Оставляется стык для охлаждения.

Важно! Нельзя допускать перегрева местного значения, вот почему так важно нагревать изоляцию равномерно. После остывания поверхность термоусадочной трубки должна быть гладкой.

Некоторые модели изнутри покрываются клеевым составом. Так вот в процессе нагрева клей будет обязательно выходить наружу, это не снизит качество изоляции.

Как правильно выбрать термоусадку

Этот вопрос на самом деле достаточно серьезный. В его основе лежит размер трубки и коэффициент усадки. Поэтому, покупая набор термоусадочных трубок, необходимо обращать внимание на эти два показателя.

Для того чтобы вы поняли, о чем идет речь, несколько примеров.

  • На трубке или на ее упаковке могут быть нанесены вот такие символы: 10/5 или 10 мм/5 мм. Первое число – это реальный диаметр изделия, второе – диаметр после усадки. Европейские трубки обозначаются в дюймах. Кстати, одна из самых известных тонкостенных моделей носит название «PBF».
  • Есть другое обозначение: 10/2:1. То есть, диаметр трубки равен 10 мм, а ее коэффициент усадки равен соотношению 2:1.

Выше уже упоминалось о трубках, в которых применяется клеевой состав. Так вот именно в них коэффициент усадки не имеет стандартного показателя. Он может варьироваться в пределах от 2,8:1 до 4:1.

Если разговор вести о форме термоусадок, то здесь три варианта:

В настоящее время производители стараются предложить трубки разного цвета, чтобы с их помощью соединять провода таких же расцветок. Делается это для удобства эксплуатации и обслуживания электрических сетей и установок. Кстати, трубки (отечественные и pbf) желто-зеленого цвета для заземляющих контуров также выпускаются. Сегодня на трынке появились и прозрачные термоусадочные трубки. Они выполняют все те же функции, как и цветные аналоги. Но есть у них и одно преимущество. Заключается оно в том, что внутрь трубки можно уложить маркировку, которую сквозь нее хорошо видно.

Поставка термоусадочной изоляции малого диаметра (pbf и отечественных тонкостенных) производится в бухтах, куда помещается от 10 до 100 м изоляции. Трубки с клеевым составом продаются в нарезке длиною или 1 м, или 1,22 м. Толстостенные изделия также продаются в нарезке, а не в бухтах.

Тепловая трубка. Кто сам делал и использовал, поделитесь.

Уважаемые коллеги! У кого есть опыт самостоятельного изготовления и эксплуатации тепловых трубок из меди? Термосифонного типа ( для простоты). Вакуумный насос, горелки и прочее-в наличии. Требуется готовое решение ТТ для использования в системе солнечного отопления.

Если трубки хеатпайп нужны только для отвода тепла, то яб не стал заморачиваться, а просто сделал бы из обычных медных, пустил бы туда водичку(антифриз) и через насос для аквариумов сделал бы циркуляцию, а тепло реализовывал через радиатор отопителя автомобильной печки(а если планируется конструкция с тепловым насосом, то отводить тепло на испаритель). Хеатпайп оправдывает себя в космосе где отсутствует гравитация.

У меня в компе прекрасно работает охладитель на ТТ. Правда, трубки, мелкие, не как для солнечного отопления. Благодаря этому оставил всего один вентилятор и тот на 1/3 от полной скорости вращения.

Хотелось бы найти конструкцию ТТ большого габарита и приличной мощности. Знаю, что эффективность у них гораздо больше, чем у обычных Солн. коллекторов. Привлекает работа ТТ при минусовых температурах за бортом.

Низкотемпературную (на этиловом спирте) гравитационную ТТ (термосифон-передает тепло только снизу вверх) делал давно и успешно.
1.Отрезаем трубку нужной длины.
2.Запаиваем заглушки в торцы (в одной заглушке отрезок капиллярной трубки для заправки ТТ)
3.Около 15%-20% объема ТТ заполняем рабочей жидкостью (РЖ) через кап. тр. (тип жидкости -от требуемого рабочего диапазона темпер.).
4.Нагреваем нижний конец ТТ до кипения РЖ, когда пары вытеснят воздух, пережимаем каппиляр.ТТ готова.

Рабочее тело в тепловой трубе должно кипеть в горячем конце и конденсироваться в холодном.
Для работы в разных положениях внутри ТТ укладыват капиллярную структуру. В Вашем случае рабочим телом должен быть фреон, но диапазон рабочей температуры будет весьма узким, в конце-концов Вы придете к кондиционеру, способным “перекачивать” тепло в 2 стороны. ИМХО.

День добрый!! Пробовал делать ТТ , но хорошего результата не получил. И как отметил Илья они работают ” снизу вверх” . Но один большой плюс у них есть, есть тепло они работают нет тепла отдыхают( Т.Е. самоуправление) и отсутствие элдвигателей насосов термодатчиков со схемой управления и привязкой к электросети .Так что дерзайте если будут положительные результаты буду рад их услышать. А я остановил свой выбор на черной пластиковой трубе на крыше и термостате на 50 – 60 градусов и термосе накопителе

Для опыта взял нерж. гофру длиной 1 метр. С одной стороны заглушка на 0.5 дюйма, с другой-шаровый кран. Запакованы на нить ЛОК. и прокладка паронитовая на заглушку. В трубку заливал воду, 10-15% от внутреннего объема трубки. Приоткрывал кран и ставил на газовую плиту. Через минуты 4-5 можно было чувствовать рукой, как поднимается температура вверх по трубке до конца с краном. Как только появлялся пар, тут же закрывал кран и снимал с огня. Для эксперимента сразу же после нагрева и закрытия крана охлаждал всю трубу под холодной водой. При встряхивании трубки внутри ее появлялся звук, похожий на перемещение ледяных шариков. Наверное, там они и получались. Максимальная температура на расстоянии 1 метр была 70 градусов. Рукой не удержать. Повторял опыт несколько раз в течение 1 часа. Результаты такие же. Можно сделать вывод, что даже такой простой девайс работает. На утро разряжение в трубе ушло. Понятно, что для эти целей предпочтительней сварка. Несколько фото для форумчан. Спасибо за советы, буду пробовать дальше. У кого есть опыт самостоятельного изготовления вакуумного коллектора из медных трубок, прошу поделиться.

Ссылка на основную публикацию
Adblock detector