Выбор спидометра для велосипеда

Спидометр arduino

Статьи, Схемы, Справочники

В проекте используется магнитный выключатель геркон для измерения скорости вращения колеса велосипеда. Для этого достаточно указать радиус колеса для правильного расчета. Магнитный выключателя геркон , который замыкает цепь каждый раз, когда колесо совершает полный оборот. LCD монитор Parallax, который используется в проекте, подключается к Arduino по трем пинам. Один идет к 5 В, один к земле, третий — к серийному выходу TX на плате Arduino на цифровом пине 1. Резисторы на 10 кОм подключены к переключателям и подсветке монитора, чтобы избежать превышения допустимой силы тока между 5 В и землей ни в коем случае не подключайте 5 В и землю напрямую к Arduino.

Поиск данных по Вашему запросу:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.

Перейти к результатам поиска >>>

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Одометр на Arduino

Please turn JavaScript on and reload the page.

В инструкции будет рассказано, как сделать цифровой спидометр для своего велосипеда. Да, это то же самое, что мы используем в автомобилях и мотоциклах, но он будет очень дешевым. Принцип работы проекта прост, но для сборки его нужно понимать. В самом простом понимании, он состоит из Геркона или магнитного выключателя, установленного на раму велосипеда и еще одного магнита, установленного на спицу колеса. Так как колесо вращается, то магнит активизирует выключатель при каждом обороте.

Сигнал поступает на Ардуино, который считает количество оборотов и по ним определяет покрытую дистанцию нужно будет сначала указать диаметр вашего колеса. Также Ардуино следит за временем и вычисляет скорость. Данные выводятся на дисплей, где они отображаются в милях в час или в километрах, если доработать формулу. Проект недорогой и может обойтись вам в рублей. Сборка потребует от вас некоторые умения в пайке. Материалы для сборки:. Перед тем, как мы перейдём к электронике, будет неплохо загрузить код, чтобы вы не испытывали конфуз, метаясь между неправильно подключенными проводами.

Загрузите код на Ардуино, перед этим не забыв указать диаметр колеса вашего велосипеда. Корпус можно сделать из пластика или дерева, он должен быть прочным и в нём должно быть достаточно пространства. После установки переключателей, экрана, кнопки и хедеров проверьте девайс на работоспособность. Постарайтесь сделать устройство водонепроницаемым, ведь оно окажется в самых худших для работы условиях. Запитайте устройство от батарейки 9V и проверьте все три режима.

Поднесите магнит близко к Геркону и скорость с дистанцией должны начать увеличиваться. Ваш e-mail не будет опубликован. Please enable JavaScript to submit this form. Игорь Самоделов. Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

Скрыть комментарии Показать комментарии. Добавить комментарий Отменить ответ Ваш e-mail не будет опубликован.

Спидометр для велосипеда на Arduino

Спидометр в навигатор Ребят, подскажите пожалуйста, у маня есть навигатор Explay ST4. Всем устраивает и быстрый и простой Люди помогите кто может схемкой. Собираю спидометр по схеме ниже.

Бортовой компьютер и множество других полезных для авто Arduino-проектов своими руками

Артур Сотников 5 Мая, — С приближением лета многие уже успели открыть велосезон, а некоторые к нему только готовятся. В любом случае, если вы часто пользуетесь двухколесным транспортом, стоит подумать насчет спидометра, чтобы измерять текущую скорость и пройденное расстояние. На все уйдет не больше пары часов, а бюджет проекта составляет меньше рублей. Источник: Instructables. Будь в курсе всех последних новостей из мира гаджетов и технологий! Лучше бы умный термостат сделали с шиной eBus, готовый купить очень дорого, на ардуино будет гораздо дешевле, чем здесь изобретать велосипед. Нагло спыжжено с ютуб канала Alex Gayver.

GPS-спидометр для автомобиля: когда твой датчик скорости забарахлил

В этом уроке мы создадим своими руками простой спидометр для велосипеда на основе микроконтроллера Ардуино. Идея состоит в том, чтобы измерить угловую скорость колеса велосипеда. Таким образом, зная диаметр и математическую легенду Пи 3. В качестве дополнительного бонуса мы решили добавить световой индикатор на велосипед, — задача состояла в том, когда включить стоп-сигнал.

Стрелочный спидометр для велосипеда на Arduino

В инструкции будет рассказано, как сделать цифровой спидометр для своего велосипеда. Да, это то же самое, что мы используем в автомобилях и мотоциклах, но он будет очень дешевым. Принцип работы проекта прост, но для сборки его нужно понимать. В самом простом понимании, он состоит из Геркона или магнитного выключателя, установленного на раму велосипеда и еще одного магнита, установленного на спицу колеса. Так как колесо вращается, то магнит активизирует выключатель при каждом обороте. Сигнал поступает на Ардуино, который считает количество оборотов и по ним определяет покрытую дистанцию нужно будет сначала указать диаметр вашего колеса.

GPS ТРЕКЕР, СПИДОМЕТР, ОДОМЕТР И СПУТНИКОВЫЕ ЧАСЫ. ПРОЕКТ НА АРДУИНО.

Проекты на Arduino и Slot Shield. В простых велокомпьютерах обычно считаются обороты колеса — зная количество оборотов в минуту не сложно подсчитать скорость и пройденное расстояние. Вот только датчики Холла на вилку ставить морока, они быстро покрываются грязью и начинают сбоить. Лишние провода отнюдь не украшают байк, а только привлекают внимание воришек. Да и что делать, если в хозяйстве не только велосипед, но ещё и самокат, ролики или сноуборд? Мы пошли другим путём. А дальше — дело техники. Полученные значения в реальном времени выводим на четырёхразрядный индикатор , переключаясь между выводом скорости и дистанции обычной тактовой кнопкой.

Читайте также:  3844B datasheet на русском

Спидометр моей рабочей машины стал барахлить: временами значение скорости падает на ноль и после некоторого времени он снова начинает работать. Если ты хорошо водишь, то это не вызывает проблем. Но если ты новичок, то постоянно должен смотреть на спидометр. Всё нормально, если ты придерживаешься примерной нужной скорости, но что делать, если тебе нужно понизить её до значений, допущенных на данном участке дороги, а твой спидометр неожиданно падает на ноль?

Введите электронную почту и получайте письма с новыми самоделками. Не более одного письма в день. Войти Чужой компьютер. В гостях у Самоделкина! Стрелочный спидометр для велосипеда на Arduino.

Привет друзья, у нас с вами над головой летает большое количество разных космических аппаратов. И сегодня мы будем ловить с них сигнал. Для начала немного теории: Спутниковая система навигации представляет из себя сеть космических аппаратов, которые летают по заранее известным маршрутам точно соблюдая свою орбиту и траекторию или находятся в известной стационарной точке на геостационарной или геосинхронной орбите. Спутники в среднем летают на высоте около 20 тысяч километров, и каждый представляет из себя сверхточные атомные часы, которые непрерывно вещают на всю планету свое текущее время. Зная точное расположение источника радиосигнала по задержке времени его распространения можно узнать точное расстояние до спутника.

Как и обещал буду делать обзоры на самоделки для которых мои руки пока, что еще не готовы. Сегодня я расскажу о спидометре на ардуино, но вначале обращу ваше внимание на ценник магазинного велосипедного спидометра. Вы можете наблюдать на скриншотах, что цена спидометра варьируется от и до рублей.

Цифровой спидометр для велосипеда

Для велосипедиста в процессе движения важно знать скорость велосипеда и пройденный путь. Определение длины велопробега довольно просто решается с помощью механического прибора, серийно выпускаемого промыш­ленностью и устанавливаемого на одну из вилок колеса. Механический указатель скорости велосипеда не получил широкого применения.

Общий принцип работы

цифрового велоспидометра заключается в следующем. Светодиод типа АЛ107Б в инфракрасной области непрерывно генерирует световые импульсы, которые принимаются фотодиодом ФД-9 и далее усиливаются операционным усилителем К140УД1А. Светодиод и фотодиод устанавливаются на вилке одного из колес велосипедиста друг против друга между спи­цами на расстоянии 1…2 см. Когда спица закрывает световое излучение, то на фотодиоде и выходе опера­ционного усилителя на время пролета спицы устанав­ливается уровень логического 0. Специальная триггерная схема непрерывно анализирует состояние между входом и выходом оптопары и при исчезновении импуль­сов с фотодиода формирует сигнал, соответствующий времени пролета спицы между светодиодом и фото­диодом. Далее генерируется определенный интервал времени, в течение которого суммируются все спицы, зафиксированные оптопарой. Полученная сумма и даст скорость велосипеда, так как количество промелькнув­ших спиц линейно возрастает со скоростью велосипеда. Изменением длины интервала суммирования (счета) добиваются необходимой калибровки прибора.

Принципиальная схема и временные диаграммы ра­боты цифрового велоспидометра приведены соответ­ственно на рис. 1 и 2.

На микросхемах DD1.1 и DD1.2 собран генератор импульсов с периодом следования около 20 мкс. После­довательность этих сигналов усиливает и одновре­менно инвертирует транзистор VT1, в коллекторной нагрузке которого включен светодиод VD1 типа АЛ107Б. Импульсы светового излучения на длине волны около 1 мкм принимает фотодиод V D2 типа ФД-9, включенный между входами операционного усилителя DA1. Соотно­шением резисторов R4 и R5 устанавливают необходи­мую чувствительность фотоприемной схемы. Tранзистор VT2 согласует выход усилителя DA1 с требуемым вход­ным потенциалом КМОП микросхем. Конденсатор C2 не пропускает постоянную составляющую на базу тран­зистора VT2. Tриггеры DD3.1 и DD3.2 непрерывно следят за состоянием между входом и выходом оптопары. В исходном состоянии, когда спица не закрывает све­товое излучение, триггер DD3.1 по S-входу устанавли­вается в единичное состояние, а триггер DD3.2 по R-входу — в нулевое. Tриггер DD5.1 делит частоту с генера­тора на микросхемах DD1.1 и DD1.2 на два. Как только спица велосипеда закрывает световое излучение, импуль­сы с выхода триггера DD5.1 по синхровходу С сбрасы­вают в нуль триггер DD3.1. Если через два последующих такта не приходит сигнал с фотодиода, то триггер DD3.2 устанавливается в единицу, тем самым формируя фронт + 1 для суммирования количества спиц. Одновременно по входу R блокируется в нуль триггер DD5.1, запрещая прохождение сигналов со входа оптопары. В таком со­стоянии схема находится несколько секунд, пока спица закрывает световой поток. Длительность времени пролета спицы определяется скоростью велосипеда и толщиной спицы. Когда открывается световой поток, срабатывает фотодиод VD1, и все триггеры по входам R и S уста­навливаются в исходное состояние. Tриггер DD5.1 необ­ходим для ликвидации «дребезга» схемы при входе спицы в полосу светового излучения. Микросхемы DD1.5 и DD1.6 совместно с конденсатором СЗ и резисторами R8 и R9 образуют генератор импульсов, во время действия которых суммируется количество спиц за определенный промежуток времени (tсч= 100-200 мс). Резистором R8 плавно регулируется длительность интервала счета.

Следует отметить, что у различных типов велосипеда интервал счета также различен. Он определяется в зави­симости от радиуса колес, количества спиц и других параметров. Поэтому величина tсч, для каждого велоси­педа устанавливается экспериментально. Cхема вело­спидометра непрерывно определяет скорость велосипеда с периодом 8tсч (от 1 до 1,5 с), в результате чего можно оперативно следить за изменением скорости на опреде­ленных участках пути: с горы, при ускорении или тор­можении. Причем на время t индикаторы погашены, а на время tинд = 7tсч индицируется сумма количества спиц, которая и определит скорость велосипеда в еди­ницах измерения км/ч за данный промежуток времени.

Читайте также:  Ram 3500 - цена и характеристики, фотографии и обзор

Погрешность измерения зависит от стабильности ин­тервала (и при изменении уровня питающего напря­жения и температуры окружающей среды и не превы­шает 3…5%.

Схема счета и индикации работает следующим об­разом.

Tактовые сигналы с генератора на микросхемах DD1.5 и DD1.б поступают на триггеры DD4.1 и DD4.2, которые делят исходную частоту на четыре. При по­ступлении с выхода микросхемы DD4.2 фронта восьмого импульса цепочка микросхем DD1.3, DD2.3 и DD2.4 формирует короткий сигнал для сброса в нуль по уста­новочным R-входам триггера DD5.2 и цифровых инди­каторов DD6 и DD7. Сигнал логического 0 с инверсного выхода микросхемы DD5.2 гасит индикацию по входу Г DD6 на время tсч. Одновременно импульс логической 1 с прямого выхода микросхемы DD5.2 разрешает на время гсч проход сигналов суммирования +1 с микро­схемы DD2.2.

В состав индикатора DD7 входит внутренний деся­тичный счетчик, который суммирует эти сигналы. При по­ступлении на счетчик DD7 десятого импульса на выхо­де Р формируется сигнал переноса, который поступает на индикатор DD6. Первым последующим тактом с ге­нератора триггер DD5.2 переходит в нулевое состояние, в результате чего запрещается счет импульсов и высвечивается сумма количества спиц на время 7tсч. Далее цикл повторяется вновь. Резисторы R11 и R12 умень­шают яркость свечения индикаторов, сокращая потреб­ляемую мощность от источника питания. Велоспидометр включается в работу кнопкой SB1. В первый такт изме­рения (около 1 с) за счет переходных процессов воз­можно неверное определение скорости велосипеда, после чего каждую секунду высвечивается точное значение скорости до выключения питания.

Наладку спидометра

начинают с проверки осцилло­графом работы генератора на микросхемах DD1.1 и DD1.2. на коллекторе транзистора VT1 должна быть по­следовательность импульсов с периодом следования около 20 мкс. Далее размещают светодиод и фотодиод друг против друга на расстоянии 1…2 см и проверяют наличие импульсов на выходе операционного усилителя DA1. Резисторами R4 и R5 устанавливают такую чув­ствительность фотоприемной схемы, при которой еще со­храняются сигналы на коллекторе транзистора VT2 при увеличении расстояния между светодиодом и фотодиодом до 4…5 см. Проверяют исходное состояние триг­геров DD5.1, DD3.1 и DD3.2 согласно временным диа­граммам рис. 2. Затем налаживают схему индикации и счета. Длительность импульсов на выводе 13 микро­схемы DD5.2 должна плавно регулироваться резисто­ром R8 в пределах от 100 до 200 мс. Подается напря­жение +9 В на входы Г индикаторов DD6 и DD7 и на вывод 5 микросхемы DD2.2, а входы R индикаторов DD6 и DD7 заземляют. Если между светодиодом и фото­диодом поместить предмет толщиной со спицу велоси­педа, то на индикаторах должна прибавиться единица. После этого следует восстановить схему согласно рис. 1. Калибровку схемы производят в процессе движения резистором R8.

О заменах деталей.

Вместо фотодиода ФД-9 можно использовать фотодиоды ФД-10, ФД-5, ФД26К, ФД27К, ФД265А, но тогда уменьшится чувствительность схемы, которую можно увеличить изменением резисто­ров R4 и R5. Возможно использование светодиодов АЛ107А, АЛ107Б, АЛ115А, АЛ115Б, АЛ118А, АЛ118Б, а также операционных усилителей К140УД1Б. Микро­схемы серии К564 можно заменить серией К561, которая более критична к уровню питающего напряжения и исполнена в другом пластмассовом корпусе. Подстроечный резистор R8 типа СП3- 16а, однако лучше приме­нять резисторы с фиксатором ручки потенциометра, так как в процессе езды возможны толчки и смешение движка резистора. Тип разъемов XI—Х5 можно выбрать по своему усмотрению, но для обеспечения надежности лучше использовать разъемы с резьбовым соединением.

Конструкция и установка схемы.

Вид печатной платы велоспидометра представлен на рис. 3 и 4. Она изго­товлена из двустороннего стеклотекстолита и установ­лена вместе с источником питания GB1 в специальный герметичный корпус с разъемами XI—Х5.

На рис. 5 показана плата индикаторов, которая крепится либо на торцевой части коробки, либо на руле велосипеда и соединяется с основной схемой гибкими проводниками. Возможные варианты установки рабочих элементов схемы на велосипеде представлены на рис. 6 и 7.

В первом ва­рианте корпус со схемой, индикаторами, источником питания крепится под рулем велосипеда. Светодиод и фотодиод устанавливаются на передней вилке, а кнопка В1 — на руле. Во втором варианте оптопара крепится на заднем колесе, схема с источником питания — под сиденьем, а индикаторы с кнопкой — на руле. Можно положить корпус со схемой просто в кобуру для ключей. Тип крепления элементов к раме каждый радиолюбитель может выбрать по своему усмотрению в зависимости от размеров, конструкции вилок и типа велосипеда.

С.Гудов. В помощь радиолюбителю №107, 1990г.

Виды спидометров для велосипеда, их конструкция, плюсы и минусы

Велосипед является популярным транспортным средством во всем мире. Езда на велосипеде помогает худеть, эффективно бороться со старостью, также это отличный способ справиться со стрессом.

Среди всего обилия велосипедных аксессуаров можно выделить механические спидометры. Это полезный и незаменимый аксессуар. Он станет надежным помощником для новичков и профессиональных велосипедистов.

Зачем нужен спидометр на велосипед?

Механический спидометр для велосипеда — это специальный измерительный прибор. Он предназначен для измерения скорости движения, а также пройденного пути.

Читайте также:  Доклад на тему; Лыжный спорт

Современные велокомпьютеры имеют большой набор функций. Они предназначены для определения разных параметров и показаний.

Виды спидометров для велосипеда, конструкция, плюсы и минусы

Виды спидометров:

  • Беспроводной.
  • Электронный.
  • Механический.

Каждый имеет свои преимущества и недостатки.

Механический спидометр

Механические спидометры уже давно не пользуются былой популярностью. Им на смену пришли электронные велокомпьютеры. Тем не менее некоторым велосипедистам нравятся винтажные модели.

Сначала детально рассмотрим конструкцию.

Устройство состоит из таких конструктивных элементов:

  • корпус;
  • тросик;
  • приводное колесико.

Чаще всего такие устройства устанавливают на шоссейные велосипеды. Устанавливать приборы на горные велосипеды не рекомендуется, потому что при попадании грязи, пыли или песка устройство быстро выходит из строя.

Главное — правильно установить механический спидометр. Покрышка должна контактировать с приводным колесиком. Для этого необходимо правильно его установить. Должен быть чистый контакт. При этом нельзя придавливать приводное колесико к резине. Вследствие чего может уменьшаться скорость движения.

Трос необходимо правильно натянуть. При этом нельзя закручивать трос.

К недостаткам относятся:

  • Если на велосипеде установлены деформированные колёса, тогда устройство работать не будет.
  • Нельзя сохранять информацию.
  • Неправильная установка прибора приводит к постоянному притормаживанию.
  • Нельзя пользоваться на проселочных дорогах. Потому что при попадании грязи устройство выйдет из строя.
  • Прибор нужно периодически смазывать.

К преимуществам относятся:

  • Надежность и доступность.
  • Стоимость.
  • Работает без батареек.

Электронная модель

Электронный спидометр — это специальный измерительный прибор.

Он предназначен для разных целей:

  • текущее время;
  • время в пути;
  • пробег;
  • скорость;
  • максимальная и средняя скорость;
  • давление и т. д.

Рассмотрим конструкцию. Электронный спидометр состоит из таких основных компонентов:

  1. Основной блок. Это специальный прибор. Как правило, он устанавливается на руль. Батарейки используются в качестве источника питания.
  2. Способы соединения. Обязательным условием является регулярная замена аккумулятора.
  3. Датчик каденса. Магнит устанавливается на шатун. А на раму монтируется датчик скорости.
  4. Датчик колеса. Этот датчик устанавливается на вилку.

Велокомпьютеры делятся на базовые и продвинутые модели. Они отличаются между собой по количеству функций.

К преимуществам относятся:

  • Демократичная стоимость.
  • Отлично подходят для новичков.

К недостаткам относятся:

  • Небольшое количество функций.
  • Провода подвержены износу.
  • Такое устройство работает только в закрепленном положении.

Принцип работы устройство весьма прост. Прибор подсчитывает сигналы от разных датчиков за определенный промежуток времени.

Рассмотрим подробнее самые популярные функции электронного спидометра:

  1. Только самые дорогие модели оснащены такой опцией. Такая функция позволяет быстро определять местоположение.
  2. Пульсометр. В комплект поставки входит специальный датчик, который измеряет пульс. Такая функция поможет предотвратить перетренированность.
  3. Альтиметр. Такая функция будет актуальна при горных походах.
  4. Каденс. Каденс позволяет определять уровень нагрузки.
  5. Два велосипеда. Можно пользоваться прибором на двух велосипедах.
  6. Термометр. На экране отображается уровень влажности и температура.
  7. Секундомер.
  8. Часы.
  9. Одометр. На экране устройства отображается общий километраж.
  10. Максимальная скорость.
  11. Средняя скорость.
  12. Текущая скорость.

Беспроводной велокомпьютер

Беспроводной велокомпьютер — это современная система контроля. Главным отличием беспроводного велокомпьютера от проводного является способ соединения. Сигнал передается через специальный радиоканал. Батарейки используются в качестве элементов питания.

Беспроводные велокомпьютеры пользуются большой популярностью среди экстремалов и путешественников.

Рассмотрим самые популярные функции:

  1. Скорость (максимальная, средняя и текущая).
  2. Часы и секундомер.
  3. Влагозащита.
  4. Синхронизация с ПК.
  5. Альтиметр и каденс.
  6. Подсветка.
  7. Пульсометр.
  8. Расчёт времени круга.

К преимуществам относятся:

  • Высокие показатели прочности. Используется надежное крепление, поэтому повредить устройство достаточно сложно.
  • Информация сохраняется в памяти.
  • Устройство подходит как для новичков, так и профессиональных спортсменов.
  • Большое количество функций.
  • Устройство не нужно смазывать.
  • При необходимости устройство можно снять с крепления.
  • Передача информации осуществляется без проводов.

К недостаткам относятся:

  • Некоторые модели не имеют подсветку.
  • Только в дорогих моделях есть GPS.
  • Высокая стоимость.
  • Регулярно нужно менять батарейки.
  • Богатый комплект поставки включает в себя всё необходимое.
  • К каждому датчику нужно устанавливать элементы питания.

Как закрепить спидометр на велосипеде?

Установка велокомпьютера состоит из нескольких этапов:

1. Первый этап — установка крепежной площадки.

Крепежная площадка — это специальная панель, которая имеет два контакта. Одним из главных конструктивных элементов является замок. Замок используется для закрепления прибора.

Крепежную площадку можно устанавливать в разных точках:

  1. На крае грипсы. В этом месте любят устанавливать крепежную площадку фанаты гаджетов. Такое размещение имеет большое количество преимуществ. Велосипедист может легко управлять гаджетом.
  2. Установка крепежной площадки на центральной части велосипедного руля. Такое положение подойдет для большинства велосипедистов. Устройство находится в безопасности.
  3. На выносе велосипедного руля. Отличное место для больших спидометров.
  4. Крепежная площадка крепится при помощи жгутов. При этом жгуты нужно сильно затянуть. После этого, нужно усилить жгуты при помощи подложки.

2. Второй этап — установка магнита и датчика. Датчики и магниты нужно устанавливать на расстоянии 8–11 см. от оси колеса. Работу нужно выполнять осторожно.

Сенсор устанавливается при помощи жгутиков. При этом геркон должен быть перпендикулярен оси магнита.

После этого, на спице устанавливается магнит. При этом расстояние между магнитом и герконом не должно превышать 2 мм. Магнит обязательно нужно затягивать.

3. Третий этап — размещение провода.

Это самый сложный и длительный этап установки. Прокладывать провод можно двумя способами:

  • По тросику тормоза. Провод монтируется на простую изоленту.
  • По рулевой колонке. Провод монтируется на жгутики. После этого, в зоне рамы нужно сделать напуск.
Ссылка на основную публикацию
Adblock detector